Search Results

You are looking at 41 - 42 of 42 items for

  • Author or Editor: James Carton x
  • Refine by Access: All Content x
Clear All Modify Search
Amy Solomon, Lisa Goddard, Arun Kumar, James Carton, Clara Deser, Ichiro Fukumori, Arthur M. Greene, Gabriele Hegerl, Ben Kirtman, Yochanan Kushnir, Matthew Newman, Doug Smith, Dan Vimont, Tom Delworth, Gerald A. Meehl, and Timothy Stockdale

Abstract

Given that over the course of the next 10–30 years the magnitude of natural decadal variations may rival that of anthropogenically forced climate change on regional scales, it is envisioned that initialized decadal predictions will provide important information for climate-related management and adaptation decisions. Such predictions are presently one of the grand challenges for the climate community. This requires identifying those physical phenomena—and their model equivalents—that may provide additional predictability on decadal time scales, including an assessment of the physical processes through which anthropogenic forcing may interact with or project upon natural variability. Such a physical framework is necessary to provide a consistent assessment (and insight into potential improvement) of the decadal prediction experiments planned to be assessed as part of the IPCC's Fifth Assessment Report.

Full access
William D. Collins, Cecilia M. Bitz, Maurice L. Blackmon, Gordon B. Bonan, Christopher S. Bretherton, James A. Carton, Ping Chang, Scott C. Doney, James J. Hack, Thomas B. Henderson, Jeffrey T. Kiehl, William G. Large, Daniel S. McKenna, Benjamin D. Santer, and Richard D. Smith

Abstract

The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.

Full access