Search Results

You are looking at 41 - 50 of 66 items for

  • Author or Editor: Jeffrey Anderson x
  • Refine by Access: All Content x
Clear All Modify Search
Nicholas F. Anderson, Cedric A. Grainger, and Jeffrey L. Stith

Abstract

Airborne in situ measurements of updrafts in tropical convective storms were analyzed to determine the similarities and differences between updrafts in a tropical continental and a tropical oceanic region. Two hundred fifteen updraft cores from the Tropical Rainfall Measuring Mission (TRMM) component of the Large Scale Biosphere–Atmosphere (LBA) experiment (tropical continental wet season) and 377 updraft cores from the Kwajalein Experiment (KWAJEX) (tropical oceanic) were analyzed in a similar manner to that of previous studies of tropical updrafts. Average speed, maximum speed, width, and mass flux of the updraft cores from the TRMM-LBA and KWAJEX were generally similar to each other and also were similar to results from previous studies of tropical updrafts.

Full access
Man-Yau Chan, Jeffrey L. Anderson, and Xingchao Chen

Abstract

The introduction of infrared water vapor channel radiance ensemble data assimilation (DA) has improved numerical weather forecasting at operational centers. Further improvements might be possible through extending ensemble data assimilation methods to better assimilate infrared satellite radiances. Here, we will illustrate that ensemble statistics under clear-sky conditions are different from cloudy conditions. This difference suggests that extending the ensemble Kalman filter (EnKF) to handle bi-Gaussian prior distributions may yield better results than the standard EnKF. In this study, we propose a computationally efficient bi-Gaussian ensemble Kalman filter (BGEnKF) to handle bi-Gaussian prior distributions. As a proof-of-concept, we used the 40-variable Lorenz 1996 model as a proxy to examine the impacts of assimilating infrared radiances with the BGEnKF and EnKF. A nonlinear observation operator that constructs radiance-like bimodal ensemble statistics was used to generate and assimilate pseudoradiances. Inflation was required for both methods to effectively assimilate pseudoradiances. In both 800- and 20-member experiments, the BGEnKF generally outperformed the EnKF. The relative performance of the BGEnKF with respect to the EnKF improved when the observation spacing and time between DA cycles (cycling interval) are increased from small values. The relative performance then degraded when observation spacing and cycling interval become sufficiently large. The BGEnKF generated less noise than the EnKF, suggesting that the BGEnKF produces more balanced analysis states than the EnKF. This proof-of-concept study motivates future investigation into using the BGEnKF to assimilate infrared observations into high-order numerical weather models.

Restricted access
Jeffrey Anderson, Huug van den Dool, Anthony Barnston, Wilbur Chen, William Stern, and Jeffrey Ploshay

A statistical model and extended ensemble integrations of two atmospheric general circulation models (GCMs) are used to simulate the extratropical atmospheric response to forcing by observed SSTs for the years 1980 through 1988. The simulations are compared to observations using the anomaly correlation and root-mean-square error of the 700-hPa height field over a region encompassing the extratropical North Pacific Ocean and most of North America. On average, the statistical model is found to produce considerably better simulations than either numerical model, even when simple statistical corrections are used to remove systematic errors from the numerical model simulations. In the mean, the simulation skill is low, but there are some individual seasons for which all three models produce simulations with good skill.

An approximate upper bound to the simulation skill that could be expected from a GCM ensemble, if the model's response to SST forcing is assumed to be perfect, is computed. This perfect model predictability allows one to make some rough extrapolations about the skill that could be expected if one could greatly improve the mean response of the GCMs without significantly impacting the variance of the ensemble. These perfect model predictability skills are better than the statistical model simulations during the summer, but for the winter, present-day statistical forecasts already have skill that is as high as the upper bound for the GCMs. Simultaneous improvements to the GCM mean response and reduction in the GCM ensemble variance would be required for these GCMs to do significantly better than the statistical model in winter. This does not preclude the possibility that, as is presently the case, a statistical blend of GCM and statistical predictions could produce a simulation better than either alone.

Because of the primitive state of coupled ocean–atmosphere GCMs, the vast majority of seasonal predictions currently produced by GCMs are performed using a two-tiered approach in which SSTs are first predicted and then used to force an atmospheric model; this motivates the examination of the simulation problem. However, it is straightforward to use the statistical model to produce true forecasts by changing its predictors from simultaneous to precursor SSTs. An examination of the decrease in skill of the statistical model when changed from simulation to prediction mode is extrapolated to draw conclusions about the skill to be expected from good coupled GCM predictions.

Full access
Thomas M. Hamill, Jeffrey S. Whitaker, Jeffrey L. Anderson, and Chris Snyder
Full access
Michael K. Tippett, Jeffrey L. Anderson, Craig H. Bishop, Thomas M. Hamill, and Jeffrey S. Whitaker

Abstract

Ensemble data assimilation methods assimilate observations using state-space estimation methods and low-rank representations of forecast and analysis error covariances. A key element of such methods is the transformation of the forecast ensemble into an analysis ensemble with appropriate statistics. This transformation may be performed stochastically by treating observations as random variables, or deterministically by requiring that the updated analysis perturbations satisfy the Kalman filter analysis error covariance equation. Deterministic analysis ensemble updates are implementations of Kalman square root filters. The nonuniqueness of the deterministic transformation used in square root Kalman filters provides a framework to compare three recently proposed ensemble data assimilation methods.

Full access
Robert Pincus, Robert J. Patrick Hofmann, Jeffrey L. Anderson, Kevin Raeder, Nancy Collins, and Jeffrey S. Whitaker

Abstract

This paper explores the degree to which short-term forecasts with global models might be improved if clouds were fully included in a data assimilation system, so that observations of clouds affected all parts of the model state and cloud variables were adjusted during assimilation. The question is examined using a single ensemble data assimilation system coupled to two present-generation climate models with different treatments of clouds. “Perfect-model” experiments using synthetic observations, taken from a free run of the model used in subsequent assimilations, are used to circumvent complications associated with systematic model errors and observational challenges; these provide a rough upper bound on the utility of cloud observations with these models. A series of experiments is performed in which direct observations of the model’s cloud variables are added to the suite of observations being assimilated. In both models, observations of clouds reduce the 6-h forecast error, with much greater reductions in one model than in the other. Improvements are largest in regions where other observations are sparse. The two cloud schemes differ in their complexity and number of degrees of freedom; the model using the simpler scheme makes better use of the cloud observations because of the stronger correlations between cloud-related and dynamical variables (particularly temperature). This implies that the impact of real cloud observations will depend on both the strength of the instantaneous, linear relationships between clouds and other fields in the natural world, and how well each assimilating model’s cloud scheme represents those relationships.

Full access
Daniel Hodyss, Jeffrey L. Anderson, Nancy Collins, William F. Campbell, and Patrick A. Reinecke

Abstract

It is well known that the ensemble-based variants of the Kalman filter may be thought of as producing a state estimate that is consistent with linear regression. Here, it is shown how quadratic polynomial regression can be performed within a serial data assimilation framework. The addition of quadratic polynomial regression to the Data Assimilation Research Testbed (DART) is also discussed and its performance is illustrated using a hierarchy of models from simple scalar systems to a GCM.

Full access
Ting-Chi Wu, Christopher S. Velden, Sharanya J. Majumdar, Hui Liu, and Jeffrey L. Anderson

Abstract

Recent studies have shown that assimilating enhanced satellite-derived atmospheric motion vectors (AMVs) has improved mesoscale forecast of tropical cyclones (TC) track and intensity. The authors conduct data-denial experiments to understand where the TC analyses and forecasts benefit the most from the enhanced AMV information using an ensemble Kalman filter and the Weather Research and Forecasting Model. The Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin provides enhanced AMV datasets with higher density and temporal resolution using shorter-interval image triplets for the duration of Typhoon Sinlaku and Hurricane Ike (both 2008). These AMV datasets are then spatially and vertically subsetted to create six parallel cycled assimilation-forecast experiments for each TC: all AMVs; AMVs withheld between 100 and 350 hPa (upper layer), between 350 and 700 hPa (middle layer), and between 700 and 999 hPa (lower layer); and only AMVs within (interior) and outside (exterior) 1000-km radius of the TC center. All AMV subsets are found to be useful in some capacity. The interior and upper-layer AMVs are particularly crucial for improving initial TC position, intensity, and the three-dimensional wind structure along with their forecasts. Compared with denying interior or exterior AMVs, withholding AMVs in different tropospheric layers had less impact on TC intensity and size forecasts. The ensemble forecast is less certain (larger spread) in providing accurate TC track, intensity, and size when upper-layer AMVs or interior AMVs are withheld. This information could be useful to potential targeting scenarios, such as activating and focusing satellite rapid-scan operations, and decisions regarding observing system assessments and deployments.

Full access
Jason A. Otkin, Martha C. Anderson, Christopher Hain, Iliana E. Mladenova, Jeffrey B. Basara, and Mark Svoboda

Abstract

Reliable indicators of rapid drought onset can help to improve the effectiveness of drought early warning systems. In this study, the evaporative stress index (ESI), which uses remotely sensed thermal infrared imagery to estimate evapotranspiration (ET), is compared to drought classifications in the U.S. Drought Monitor (USDM) and standard precipitation-based drought indicators for several cases of rapid drought development that have occurred across the United States in recent years. Analysis of meteorological time series from the North American Regional Reanalysis indicates that these events are typically characterized by warm air temperature and low cloud cover anomalies, often with high winds and dewpoint depressions that serve to hasten evaporative depletion of soil moisture reserves. Standardized change anomalies depicting the rate at which various multiweek ESI composites changed over different time intervals are computed to more easily identify areas experiencing rapid changes in ET. Overall, the results demonstrate that ESI change anomalies can provide early warning of incipient drought impacts on agricultural systems, as indicated in crop condition reports collected by the National Agricultural Statistics Service. In each case examined, large negative change anomalies indicative of rapidly drying conditions were either coincident with the introduction of drought in the USDM or lead the USDM drought depiction by several weeks, depending on which ESI composite and time-differencing interval was used. Incorporation of the ESI as a data layer used in the construction of the USDM may improve timely depictions of moisture conditions and vegetation stress associated with flash drought events.

Restricted access
Ting-Chi Wu, Hui Liu, Sharanya J. Majumdar, Christopher S. Velden, and Jeffrey L. Anderson

Abstract

The influence of assimilating enhanced atmospheric motion vectors (AMVs) on mesoscale analyses and forecasts of tropical cyclones (TC) is investigated. AMVs from the geostationary Multifunctional Transport Satellite (MTSAT) are processed by the Cooperative Institute for Meteorological Satellite Studies (CIMSS, University of Wisconsin–Madison) for the duration of Typhoon Sinlaku (2008), which included a rapid intensification phase and a slow, meandering track. The ensemble Kalman filter and the Weather Research and Forecasting Model are utilized within the Data Assimilation Research Testbed. In addition to conventional observations, three different groups of AMVs are assimilated in parallel experiments: CTL, the same dataset assimilated in the NCEP operational analysis; CIMSS(h), hourly datasets processed by CIMSS; and CIMSS(h+RS), the dataset including AMVs from the rapid-scan mode. With an order of magnitude more AMV data assimilated, the CIMSS(h) analyses exhibit a superior track, intensity, and structure to CTL analyses. The corresponding 3-day ensemble forecasts initialized with CIMSS(h) yield smaller track and intensity errors than those initialized with CTL. During the period when rapid-scan AMVs are available, the CIMSS(h+RS) analyses offer additional modifications to the TC and its environment. In contrast to many members in the ensemble forecasts initialized from the CTL and CIMSS(h) analyses that predict an erroneous landfall in China, the CIMSS(h+RS) members capture recurvature, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. Further studies to identify optimal strategies for assimilating integrated full-resolution multivariate data from satellites are under way.

Full access