Search Results

You are looking at 41 - 50 of 85 items for

  • Author or Editor: L. Ruby Leung x
  • Refine by Access: All Content x
Clear All Modify Search
Jian Lu
,
Wenyu Zhou
,
Hailu Kong
,
L. Ruby Leung
,
Bryce Harrop
, and
Fengfei Song

Abstract

Energy balance models (EBMs) have been widely used in a range of climate problems, but the assumption of constant diffusivity in the parameterization of the moist static energy (MSE) flux can hardly be justified. We demonstrate in this study that the diffusive MSE flux can be derived from the basic energy balance equation with a few tolerable assumptions. The estimated diffusivity is both spatially and seasonally dependent, and its midlatitude average is then tested against several scaling theories for the midlatitude eddy diffusivity. The result supports the diffusivity theory of Held and Larichev modified for the moist atmosphere, affording a dynamics-based parameterization of MSE diffusivity. The implementation of the parameterization in an EBM leads to an interactive MSE diffusivity that accounts for the midlatitude eddy response to climate forcing perturbations. Under a uniform radiative forcing, the EBM with a diffusivity so parameterized produces a weakening of the midlatitude diffusivity and a modestly polar-amplified surface temperature response as an inevitable outcome under the dual constraints of the nonlinear Clausius–Clapeyron relation and the temperature gradient-dependent diffusivity, even in the absence of any poleward-amplifying radiative feedbacks. As the consequence of more isothermal temperature and reduced diffusivity, the variance of the midlatitude surface temperature also decreases with warming.

Open access
Fukai Liu
,
Jian Lu
,
Yi Huang
,
L. Ruby Leung
,
Bryce E. Harrop
, and
Yiyong Luo

Abstract

Climate response is often assumed to be linear in climate sensitivity studies. However, by examining the surface temperature (TS) response to pairs of oceanic forcings of equal amplitude but opposite sign in a large set of local q-flux perturbation experiments with CAM5 coupled to a slab, we find strong asymmetry in TS responses to the heating and cooling forcings, indicating a strong nonlinearity intrinsic to the climate system examined. Regardless of where the symmetric forcing is placed, the cooling response to the negative forcing always exceeds the warming to the positive forcing, implying an intrinsic inclination toward cooling of our current climate. Thus, the ongoing global warming induced by increasing greenhouse gases may have already been alleviated by the asymmetric component of the response. The common asymmetry in TS response peaks in high latitudes, especially along sea ice edges, with notable seasonal dependence. Decomposition into different radiative feedbacks through a radiative kernel indicates that the asymmetry in the TS response is realized largely through lapse rate and albedo feedbacks. Further process interference experiments disabling the seasonal cycle and/or sea ice reveal that the asymmetry originates ultimately from the presence of the sea ice component and is further amplified by the seasonal cycle. The fact that a pair of opposite tropical q-flux forcings can excite very similar asymmetric response as a pair placed at 55°S strongly suggests the asymmetric response is a manifestation of an internal mode of the climate model system.

Free access
Pinya Wang
,
Yang Yang
,
Daokai Xue
,
Yi Qu
,
Jianping Tang
,
L. Ruby Leung
, and
Hong Liao

Abstract

Compound hazards are more destructive than the individual ones. Using observational and reanalysis datasets during 1960–2019, this study shows a remarkable concurrent relationship between extreme heatwaves (HWs) over southeastern coast of China (SECC) and tropical cyclone (TC) activities over western North Pacific (WNP). Overall, 70% of HWs co-occurred with TC activities (TC–HWs) in the past 60 years. Although the total frequency of TCs over WNP exhibited a decreasing trend, the occurrences of TC–HWs over SECC have been increasing, primarily due to the increasing HWs in the warming climate. In addition, TC–HWs are stronger and longer lasting than HWs that occur alone (AHWs). And in the long-term perspective, both AHWs and TC–HWs exhibit increasing trends, especially since the mid-1980s. The enhancement on HWs caused by TC activities is sustained until TCs make their landfalls and then collapse. Based on composite analysis, TC activities enhance HWs by modulating atmospheric circulations and triggering anomalous descending motion over southern China mainland which intensifies the western Pacific subtropical high (WPSH) and favors increased temperatures therein. Given the severe adverse impacts of TC–HWs on coastal populations, more research is needed to assess the future projections of TC–HWs, as HWs are expected to be more frequent and stronger as the climate warms, whereas TCs over WNP may occur less often.

Free access
Fukai Liu
,
Jian Lu
,
Oluwayemi Garuba
,
L. Ruby Leung
,
Yiyong Luo
, and
Xiuquan Wan

Abstract

This paper explores the use of the linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q flux) forcings. Two methods for constructing the LRF based on the fluctuation–dissipation theorem (FDT) and Green’s function (GRF) are examined. A 900-yr preindustrial simulation by the Community Earth System Model coupled with a slab ocean model (CESM–SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM–SOM simulations with warm and cold q-flux patches are performed. FDT is found to have some skill in estimating the SST response to a q-flux forcing when the local SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departure of the SST distribution from Gaussianity, and the nonnormality of the constructed operator. The GRF-based LRF is then used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be 3–4 times more effective than low latitudes in producing global surface warming, and (ii) identify the most excitable SST mode (neutral vector) that shows marked resemblance to the interdecadal Pacific oscillation (IPO). The latter discovery suggests that the IPO-like fluctuation exists in the absence of the coupling to the ocean dynamics. Coupling to the ocean dynamics in CESM, on the other hand, only enhances the spectral power of the IPO at interannual time scales.

Full access
Qing Yang
,
L. Ruby Leung
,
Sara A. Rauscher
,
Todd D. Ringler
, and
Mark A. Taylor

Abstract

This study investigates the moisture budgets and resolution dependency of precipitation extremes in an aquaplanet framework based on the Community Atmosphere Model, version 4 (CAM4). Moisture budgets from simulations using two different dynamical cores, the Model for Prediction Across Scales-Atmosphere (MPAS-A) and High Order Method Modeling Environment (HOMME), but the same physics parameterizations suggest that during precipitation extremes the intensity of precipitation is approximately balanced by the vertical advective moisture transport. The resolution dependency in extremes from simulations at their native grid resolution originates from that of vertical moisture transport, which is mainly explained by changes in dynamics (related to vertical velocity ω) with resolution. When assessed at the same grid scale by area-weighted averaging the fine-resolution simulations to the coarse grids, simulations with either dynamical core still demonstrate resolution dependency in extreme precipitation with no convergence over the tropics, but convergence occurs at a wide range of latitudes over the extratropics. The use of lower temporal frequency data (i.e., daily vs 6 hourly) reduces the resolution dependency. Although thermodynamic (moisture) changes become significant in offsetting the effect of dynamics when assessed at the same grid scale, especially over the extratropics, changes in dynamics with resolution are still large and explain most of the resolution dependency during extremes. This suggests that the effects of subgrid-scale variability of ω and vertical moisture transport during extremes are not adequately parameterized by the model at coarse resolution. The aquaplanet framework and analysis described in this study provide an important metric for assessing sensitivities of cloud parameterizations to spatial resolution and dynamical cores under extreme conditions.

Full access
Maoyi Huang
,
Zhangshuan Hou
,
L. Ruby Leung
,
Yinghai Ke
,
Ying Liu
,
Zhufeng Fang
, and
Yu Sun

Abstract

In this study, the authors applied version 4 of the Community Land Model (CLM4) integrated with an uncertainty quantification (UQ) framework to 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning a wide range of climate and site conditions to investigate the sensitivity of runoff simulations to major hydrologic parameters and to assess the fidelity of CLM4, as the land component of the Community Earth System Model (CESM), in capturing realistic hydrological responses. They found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture–related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, water-limited hydrologic regime and finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study evaluated the parameter identifiability of hydrological parameters from streamflow observations at selected MOPEX basins and demonstrated the feasibility of parameter inversion/calibration for CLM4 to improve runoff simulations. The results suggest that in order to calibrate CLM4 hydrologic parameters, model reduction is needed to include only the identifiable parameters in the unknowns. With the reduced parameter set dimensionality, the inverse problem is less ill posed.

Full access
L. Ruby Leung
,
Alan F. Hamlet
,
Dennis P. Lettenmaier
, and
Arun Kumar

Natural fluctuations in the atmosphere–ocean system related to the El Niño–Southern Oscillation (ENSO) induce climate variability over many parts of the world that is potentially predictable with lead times from seasons to decades. This study examines the potential of using a model nesting approach to provide seasonal climate and streamflow forecasts suitable for water resources management. Two ensembles of perpetual January simulations were performed with a regional climate model driven by a general circulation model (GCM), using observed climatological sea surface temperature (SST) and the mean SST of the warm ENSO years between 1950 and 1994. The climate simulations were then used to drive a macroscale hydrology model to simulate streamflow. The differences between the two ensembles of simulations are defined as the warm ENSO signals.

The simulated hydroclimate signals were compared with observations. The analyses focus on the Columbia River basin in the Pacific Northwest. Results show that the global and regional models simulated a warming over the Pacific Northwest that is quite close to the observations. The models also correctly captured the strong wet signal over California and the weak dry signal over the Pacific Northwest during warm ENSO years. The regional climate model consistently performed better than the GCM in simulating the spatial distribution of regional climate and climate signals. When the climate simulations were used to drive a macroscale hydrology model at the Columbia River basin, the simulated streamflow signal resembles that derived from hydrological simulations driven by observed climate. The streamflow simulations were considerably improved when a simple bias correction scheme was applied to the climate simulations. The coupled regional climate and macroscale hydrologic simulations demonstrate the prospect for generating and utilizing seasonal climate forecasts for managing reservoirs.

Full access
Yan Yang
,
Jiwen Fan
,
L. Ruby Leung
,
Chun Zhao
,
Zhanqing Li
, and
Daniel Rosenfeld

Abstract

A significant reduction in precipitation in the past decades has been documented over many mountain ranges such as those in central and eastern China. Consistent with the increase of air pollution in these regions, it has been argued that the precipitation trend is linked to the aerosol microphysical effect on suppressing warm rain. Rigorous quantitative investigations on the reasons responsible for the precipitation reduction are lacking. In this study, an improved Weather Research and Forecasting (WRF) Model with online coupled chemistry (WRF-Chem) is applied and simulations are conducted at the convection-permitting scale to explore the major mechanisms governing changes in precipitation from orographic clouds in the Mt. Hua area in central China. It is found that anthropogenic pollution contributes to a ~40% reduction of precipitation over Mt. Hua during the 1-month summertime period. The reduction is mainly associated with precipitation events associated with valley–mountain circulation and a mesoscale cold-front event. In this paper (Part I), the mechanism leading to a significant reduction for the cases associated with valley–mountain circulation is scrutinized. It is found that the valley breeze is weakened by aerosols as a result of absorbing aerosol-induced warming aloft and cooling near the surface as a result of aerosol–radiation interaction (ARI). The weakened valley breeze and the reduced water vapor in the valley due to reduced evapotranspiration as a result of surface cooling significantly reduce the transport of water vapor from the valley to mountain and the relative humidity over the mountain, thus suppressing convection and precipitation in the mountain.

Full access
Gang Chen
,
Jesse Norris
,
J. David Neelin
,
Jian Lu
,
L. Ruby Leung
, and
Koichi Sakaguchi

Abstract

Precipitation changes in a warming climate have been examined with a focus on either mean precipitation or precipitation extremes, but changes in the full probability distribution of precipitation have not been well studied. This paper develops a methodology for the quantile-conditional column moisture budget of the atmosphere for the full probability distribution of precipitation. Analysis is performed on idealized aquaplanet model simulations under 3-K uniform SST warming across different horizontal resolutions. Because the covariance of specific humidity and horizontal mass convergence is much reduced when conditioned onto a given precipitation percentile range, their conditional averages yield a clear separation between the moisture (thermodynamic) and circulation (dynamic) effects of vertical moisture transport on precipitation. The thermodynamic response to idealized climate warming can be understood as a generalized “wet get wetter” mechanism, in which the heaviest precipitation of the probability distribution is enhanced most from increased gross moisture stratification, at a rate controlled by the change in lower-tropospheric moisture rather than column moisture. The dynamic effect, in contrast, can be interpreted by shifts in large-scale atmospheric circulations such as the Hadley cell circulation or midlatitude storm tracks. Furthermore, horizontal moisture advection, albeit of secondary role, is important for regional precipitation change. Although similar mechanisms are at play for changes in both mean precipitation and precipitation extremes, the thermodynamic contributions of moisture transport to increases in high percentiles of precipitation tend to be more widespread across a wide range of latitudes than increases in the mean, especially in the subtropics.

Full access
Angeline G. Pendergrass
,
Peter J. Gleckler
,
L. Ruby Leung
, and
Christian Jakob
Free access