Search Results

You are looking at 41 - 50 of 76 items for

  • Author or Editor: Margaret LeMone x
  • Refine by Access: All Content x
Clear All Modify Search
Margaret A. LeMone
,
Bingcheng Wan
,
Michael Barlage
, and
Fei Chen

Abstract

During the 2010 Bio–Hydro–Atmosphere Interactions of Energy, Aerosols, Carbon, H2O, and Nitrogen (BEACHON) experiment in Colorado, nighttime temperatures over a site within the 2002 “Hayman” fire scar were considerably warmer than over the “Manitou” site that was located outside the fire scar. Temperature differences reached up to 7 K at the surface and extended to an average of 500 m AGL. Afternoon temperatures through the planetary boundary layer (PBL) were similar at the two locations. PBL growth during the day was more rapid at Manitou until 1300 local time, after which the two daytime PBLs had similar temperatures and depths. Observations were taken in fair weather, with weak winds. Runs of the Advanced Research version of the Weather Research and Forecasting model (ARW-WRF) coupled to the Noah-MP land surface model suggest that the fire-induced loss of surface and soil organic matter accounted for the 3–4-K warming at Hayman relative to its prefire state, more than compensating for the cooling due to the fire-induced change in vegetation from forest to grassland. Modeled surface fluxes and soil temperature and moisture changes were consistent with observational studies comparing several-year-old fire scars with adjacent unaffected forests. The remaining difference between the two sites is likely from cold-air pooling at Manitou. It was necessary to increase vertical resolution and replace terrain-following diffusion with horizontal diffusion in ARW-WRF to better capture nighttime near-surface temperature and winds. Daytime PBL growth and afternoon temperature profiles were reasonably reproduced by the basic run with postfire conditions. Winds above the surface were only fairly represented, and refinements made to capture cold pooling degraded daytime temperature profiles slightly.

Full access
David P. Jorgensen
,
Edward J. Zipser
, and
Margaret A. LeMone

Abstract

Hurricane vertical motion properties are studied using aircraft-measured 1 Hz time series of vertical velocity obtained during radial penetrations of four mature hurricanes. A total of 115 penetrations from nine flight sorties at altitudes from 0.5 to 6.1 km are included in the data set. Convective vertical motion events are classified as updrafts (or downdrafts) if the vertical velocity was continuously positive (or negative) for at least 500 m and exceed an absolute value of 0.5 m s−1. Over 3000 updrafts and nearly 2000 downdrafts are included in the data set. A second criteria was used to define stronger events, called cores. This criteria required that upward (or downward) vertical velocity be continuously greater than an absolute value of 1 m s−1 for at least 500 m.

The draft and core properties are summarized as distributions of average and maximum vertical velocity, diameter, and vertical mass transport in two regions: eyewall and rainband. In both regions updrafts dominated over downdrafts, both in number and mass transport. In the eyewall region, the draft and core strength distributions were similar to data collected by aircraft in GATE cumulonimbus clouds. Unlike GATE clouds, however, the largest updraft cores (larger than 90% of the distribution) were over twice as large and transported twice as much mass as did the corresponding GATE updraft cores. Eyewall ascent was highly organized in a channel several kilometers wide located a few kilometers radically inward from the radius of maximum tangential wind.

As in GATE, the strongest hurricane updraft cores were weak in comparison with the strongest updrafts observed in typical midlatitude thunderstorms. Mean eyewall profiles of radar reflectivity and cloud water content are discussed to illustrate the microphysical implications of the low updraft rates.

Full access
Margaret A. LeMone
,
Mukul Tewari
,
Fei Chen
, and
Jimy Dudhia

Abstract

Heights of nocturnal boundary layer (NBL) features are determined using vertical profiles from the Advanced Research Weather Research and Forecasting Model (ARW-WRF), and then compared to data for three moderately windy fair-weather nights during the April–May 1997 Kansas-based Cooperative Atmosphere–Surface Exchange Study (CASES-97) to evaluate the success of four PBL schemes in replicating observations. The schemes are Bougeault–LaCarrere (BouLac), Mellor–Yamada–Janjić (MYJ), quasi-normal scale elimination (QNSE), and Yonsei University (YSU) versions 3.2 and 3.4.1. This study’s chosen objectively determined model NBL height h estimate uses a turbulence kinetic energy (TKE) threshold equal to 5% , where TKE′ is relative to its background (free atmosphere) value. The YSU- and MYJ-determined h could not be improved upon. Observed heights of the virtual temperature maximum h Tvmax and wind speed maximum h Smax, and the heights h 1wsonde and h 2wsonde, between which the radiosonde slows from ~5 to ~3 m s−1 as it rises from turbulent to nonturbulent air, and thus brackets h, were used for comparison to model results. The observations revealed a general pattern: h Tvmax increased through the night, and h Tvmax and h Smax converged with time, and the two mostly lay between h 1wsonde and h 2wsonde after several hours. Clear failure to adhere to this pattern and large excursions from observations or other PBL schemes revealed excess mixing for BouLac and YSU version 3.2 (but not version 3.4.1) and excess thermal mixing for QNSE under windy conditions. Observed friction velocity was much smaller than model values, with differences consistent with the observations reflecting local skin drag and the model reflecting regional form drag + skin drag.

Full access
Stanley B. Trier
,
William C. Skamarock
, and
Margaret A. LeMone

Abstract

Mechanisms responsible for meso- and convective-scale organization within a large tropical squall line that occurred on 22 February 1993 during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment are investigated using a three-dimensional numerical cloud model. The squall line occurred in an environment typical of fast-moving tropical squall lines, characterized by moderate convective available potential energy and moderate-to-strong vertical shear beneath a low-level jet with weak reverse vertical shear above.

A well-simulated aspect of the observed squall line is the evolution of a portion of its leading convective zone from a quasi-linear to a three-dimensional bow-shaped structure over a 2-h period. This transition is accompanied by the development of both a prominent mesoscale vortex along the northern edge of the 40–60-km long bow-shaped feature and elongated bands of weaker reflectivity situated rearward and oriented transverse to the leading edge, within enhanced front-to-rear system relative midlevel flow, near the southern end of the bow. The vertical wind shear that arises from the convectively induced mesoscale flow within the squall-line system is found to be a critical factor influencing 1) the development of the vortex and 2) through its associated vertical pressure gradients, the pronounced along-line variability of the convective updraft and precipitation structure. The environmental wind profile is also critical to system organization since the orientation of its vertical shear (in layers both above and below the environmental jet height) relative to the local orientation of the incipient storm-induced subcloud cold pool directly influences the onset of the convectively induced mesoscale flow.

Full access
Margaret A. Lemone
,
Tae Y. Chang
, and
Christopher Lucas

Abstract

No abstract available.

Full access
Song-Lak Kang
,
Kenneth J. Davis
, and
Margaret LeMone

Abstract

This study analyzes data collected by aircraft and surface flux sites over a 60-km north–south-oriented aircraft track for five fair-weather days during the International H2O Project (IHOP_2002) to investigate the atmospheric boundary layer (ABL) structures over a heterogeneous land surface under different background weather conditions. The surface skin temperature distribution over the aircraft track in this case is mostly explained by the soil thermal properties and soil moisture, and corresponds to the observed ABL depths except one day having a weak surface temperature gradient and a weak capping inversion. For the other four days, the blending height of the surface heterogeneity likely exceeds the ABL depth and thus the ABL establishes equilibrium with local surface conditions.

Among the four days, two days having relatively small Obukhov lengths are evaluated to show the background weather conditions under which small-scale surface heterogeneity can influence the entire ABL. In fact, on one of these two days, relatively small-scale features of the surface temperature distribution can be seen in the ABL depth distribution. On the two small Obukhov length days multiresolution spectra and joint probability distributions, which are applied to the data collected from repeated low-level aircraft passes, both imply the existence of surface-heterogeneity-generated mesoscale circulations on scales of 10 km or more. Also on these two small Obukhov length days, the vertical profiles of dimensionless variances of velocity, temperature, and moisture show large deviations from the similarity curves, which also imply the existence of mesoscale circulations.

Full access
L. Jay Miller
,
Margaret A. LeMone
,
William Blumen
,
Robert L. Grossman
,
Nimal Gamage
, and
Robert J. Zamora

Abstract

Observations taken over the period 8–10 March 1992 during the Storm-scale Operational and Research Meteorology Fronts Experiment Systems Test in the central United States are used to document the detailed low-level structure and evolution of a shallow, dry arctic front. The front was characterized by cloudy skies to its north side and clear skies to its south side. It was essentially two-dimensional in the zone of intense observations.

There was a significant diurnal cycle in the magnitude of the potential temperature gradient across both the subsynoptic and mesoscale frontal zones, but imposed upon an underlying, more gradual, increase over the three days. On the warm (cloudless) side., the temperature increased and decreased in response to the diurnal heating cycle, while on the cold (cloudy) side the shape of the temperature decrease from its warm-side value (first dropping rapidly and then slowly in an exponential-like manner) remained fairly steady. The authors attribute the strong diurnal variation in potential temperature gradient mostly to the effects of differential diabatic heating across the front due to differential cloud cover.

The front is described in terms of three scales: 1) a broad, subsynoptic frontal zone (∼250–300 km wide) of modest temperature and wind gradients; 2) a narrower mesoscale zone (∼15–20 km wide) with much larger gradients; and 3) a microscale zone of near-zero-order discontinuity (≤1–2 km wide). There was some narrowing (≲50 km) of the subsynoptic frontal zone, but the authors found no evidence for any significant contraction of this zone down to much smaller mesoscale sizes. In response to the differential diabatic heating, the strongest evolution occurred in the micro-mesoscale zone, where dual-Doppler radar and aircraft measurements revealed the development of a density-current-like structure in and behind the leading edge of cold air. Here the steepest gradients developed shortly after sunrise and then increased by an order of magnitude during the day, with leading-edge vorticity, divergence, and temperature gradients reaching maximum values of 10−2 s−1 and 8 K km−1. A narrow updraft, marked by cumulus clouds, grew in intensity above the leading edge through the day to a maximum of 5–8 m s−1. Stratus clouds lay in the cold air, their leading edge receding by noon to 10–20 km behind the cumulus line.

Full access
Margaret A. LeMone
,
Robert L. Grossman
,
Fei Chen
,
Kyoko Ikeda
, and
David Yates

Abstract

Data from the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to illustrate a holistic way to select an averaging interval for comparing horizontal variations in sensible heat (H) and latent heat (LE) fluxes from low-level aircraft flights to those from land surface models (LSMs). The ideal filter can be defined by considering the degree to which filtered aircraft fluxes 1) replicate the observed pattern followed by H and LE at the surface, 2) are statically robust, and 3) retain the heterogeneity to be modeled. Spatial variability and temporal variability are computed for different filtering wavelengths to assess spatial variability sacrificed by filtering and how much temporal variability can be eliminated; ideally, spatial variability should approach or exceed temporal variability. The surface pattern to be replicated is a negative slope when H is plotted against LE for a given time. This is required for surface energy balance if H or LE vary horizontally more than their sum, R n G, the difference between the net radiation and heat flux into the ground. Statistical confidence is estimated using conventional techniques. The same factors can be used to examine comparisons already done, or to estimate the number of flight legs needed to measure heterogeneity at a given scale in future field programs.

Full access
Margaret A. LeMone
,
Kyoko Ikeda
,
Robert L. Grossman
, and
Mathias W. Rotach

Abstract

Surface-station, radiosonde, and Doppler minisodar data from the Cooperative Atmosphere–Surface Exchange Study-1997 (CASES-97) field project, collected in a 60-km-wide array in the lower Walnut River watershed (terrain variation ∼150 m) southeast of Wichita, Kansas, are used to study the relationship of the change of the 2-m potential temperature Θ2m with station elevation z e , ∂Θ2m/∂z e ≡ Θ,ze to the ambient wind and thermal stratification ∂Θ/∂z ≡ Θ,z during fair-weather nights. As in many previous studies, predawn Θ2m varies linearly with z e , and Θ,ze ∼ Θ,z over a depth h that represents the maximum elevation range of the stations. Departures from the linear Θ2m–elevation relationship (Θ,ze line) are related to vegetation (cool for vegetation, warm for bare ground), local terrain (drainage flows from nearby hills, although a causal relationship is not established), and the formation of a cold pool at lower elevations on some days.

The near-surface flow and its evolution are functions of the Froude number Fr = S/(Nh), where S is the mean wind speed from the surface to h, and N is the corresponding Brunt–Väisälä frequency. The near-surface wind is coupled to the ambient flow for Fr = 3.3, based on where the straight line relating Θ,ze to ln Fr intersects the ln Fr axis. Under these conditions, Θ2m is constant horizontally even though Θ,z > 0, suggesting that near-surface air moves up- and downslope dry adiabatically. However, Θ2m cools (or warms) everywhere at the same rate. The lowest Froude numbers are associated with drainage flows, while intermediate values characterize regimes with intermediate behavior. The evolution of Θ2m horizontal variability σ Θ through the night is also a function of the predawn Froude number. For the nights with the lowest Fr, the σ Θ maximum occurs in the last 1–3 h before sunrise. For nights with Fr ∼ 3.3 (Θ,ze ≈ 0) and for intermediate values, σ Θ peaks 2–3 h after sunset. The standard deviations relative to the Θ,ze line reach their lowest values in the last hours of darkness. Thus, it is not surprising that the relationships of Θ,ze to Fr and Θ,z based on data through the night show more scatter, and Θ,ze ∼ 0.5Θ,z in contrast to the predawn relationship. However, Θ,ze ≈ 0 for ln Fr = 3.7, a value similar to that just before sunrise.

A heuristic Lagrangian parcel model is used to explain the horizontal uniformity of time-evolving Θ2m when the surface flow is coupled with the ambient wind, as well as both the linear variation of Θ2m with elevation and the time required to reach maximum values of σ Θ under drainage-flow conditions.

Full access
Monica Górska
,
Jordi Vilà-Guerau de Arellano
,
Margaret A. LeMone
, and
Chiel C. van Heerwaarden

Abstract

The effects of the horizontal variability of surface properties on the turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide are investigated by combining aircraft observations with large-eddy simulations (LESs). Daytime fair-weather aircraft measurements from the 2002 International H2O Project’s 45-km Eastern Track over mixed grassland and winter wheat in southeast Kansas reveal that the western part of the atmospheric boundary layer was warmer and drier than the eastern part, with higher values of carbon dioxide to the east. The temperature and specific humidity patterns are consistent with the pattern of surface fluxes produced by the High-Resolution Land Data Assimilation System. However, the observed turbulent fluxes of virtual potential temperature, moisture, and carbon dioxide, computed as a function of longitude along the flight track, do not show a clear east–west trend. Rather, the fluxes at 70 m above ground level related better to the surface variability quantified in terms of the normalized differential vegetation index (NDVI), with strong correlation between carbon dioxide fluxes and NDVI.

A first attempt is made to estimate the ratios of the flux at the entrainment zone to the surface flux (entrainment ratios) as a function of longitude. The entrainment ratios averaged from these observations (β θ υ ≈ 0.10, βq ≈ −2.4, and β CO2 ≈ −0.58) are similar to the values found from the homogeneous LES experiment with initial and boundary conditions similar to observations.

To understand how surface flux heterogeneity influences turbulent fluxes higher up, a heterogeneous LES experiment is performed in a domain with higher sensible and lower latent heat fluxes in the western half compared to the eastern half. In contrast to the aircraft measurements, the LES turbulent fluxes show a difference in magnitude between the eastern and western halves at 70 and 700 m above ground level. Possible reasons for these differences between results from LES and aircraft measurements are discussed.

Full access