Search Results

You are looking at 41 - 46 of 46 items for

  • Author or Editor: Michael C. Coniglio x
  • Refine by Access: All Content x
Clear All Modify Search
Corey K. Potvin, Patrick S. Skinner, Kimberly A. Hoogewind, Michael C. Coniglio, Jeremy A. Gibbs, Adam J. Clark, Montgomery L. Flora, Anthony E. Reinhart, Jacob R. Carley, and Elizabeth N. Smith


The NOAA Warn-on-Forecast System (WoFS) is an experimental rapidly updating convection-allowing ensemble designed to provide probabilistic operational guidance on high-impact thunderstorm hazards. The current WoFS uses physics diversity to help maintain ensemble spread. We assess the systematic impacts of the three WoFS PBL schemes—YSU, MYJ, and MYNN—using novel, object-based methods tailored to thunderstorms. Very short forecast lead times of 0–3 h are examined, which limits phase errors and thereby facilitates comparisons of observed and model storms that occurred in the same area at the same time. This evaluation framework facilitates assessment of systematic PBL scheme impacts on storms and storm environments. Forecasts using all three PBL schemes exhibit overly narrow ranges of surface temperature, dewpoint, and wind speed. The surface biases do not generally decrease at later forecast initialization times, indicating that systematic PBL scheme errors are not well mitigated by data assimilation. The YSU scheme exhibits the least bias of the three in surface temperature and moisture and in many sounding-derived convective variables. Interscheme environmental differences are similar both near and far from storms and qualitatively resemble the differences analyzed in previous studies. The YSU environments exhibit stronger mixing, as expected of nonlocal PBL schemes; are slightly less favorable for storm intensification; and produce correspondingly weaker storms than the MYJ and MYNN environments. On the other hand, systematic interscheme differences in storm morphology and storm location forecast skill are negligible. Overall, the results suggest that calibrating forecasts to correct for systematic differences between PBL schemes may modestly improve WoFS and other convection-allowing ensemble guidance at short lead times.

Free access
John S. Kain, Steve Willington, Adam J. Clark, Steven J. Weiss, Mark Weeks, Israel L. Jirak, Michael C. Coniglio, Nigel M. Roberts, Christopher D. Karstens, Jonathan M. Wilkinson, Kent H. Knopfmeier, Humphrey W. Lean, Laura Ellam, Kirsty Hanley, Rachel North, and Dan Suri


In recent years, a growing partnership has emerged between the Met Office and the designated U.S. national centers for expertise in severe weather research and forecasting, that is, the National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Laboratory (NSSL) and the NOAA Storm Prediction Center (SPC). The driving force behind this partnership is a compelling set of mutual interests related to predicting and understanding high-impact weather and using high-resolution numerical weather prediction models as foundational tools to explore these interests.

The forum for this collaborative activity is the NOAA Hazardous Weather Testbed, where annual Spring Forecasting Experiments (SFEs) are conducted by NSSL and SPC. For the last decade, NSSL and SPC have used these experiments to find ways that high-resolution models can help achieve greater success in the prediction of tornadoes, large hail, and damaging winds. Beginning in 2012, the Met Office became a contributing partner in annual SFEs, bringing complementary expertise in the use of convection-allowing models, derived in their case from a parallel decadelong effort to use these models to advance prediction of flash floods associated with heavy thunderstorms.

The collaboration between NSSL, SPC, and the Met Office has been enthusiastic and productive, driven by strong mutual interests at a grassroots level and generous institutional support from the parent government agencies. In this article, a historical background is provided, motivations for collaborative activities are emphasized, and preliminary results are highlighted.

Full access
John S. Kain, Michael C. Coniglio, James Correia, Adam J. Clark, Patrick T. Marsh, Conrad L. Ziegler, Valliappa Lakshmanan, Stuart D. Miller Jr., Scott R. Dembek, Steven J. Weiss, Fanyou Kong, Ming Xue, Ryan A. Sobash, Andrew R. Dean, Israel L. Jirak, and Christopher J. Melick

The 2011 Spring Forecasting Experiment in the NOAA Hazardous Weather Testbed (HWT) featured a significant component on convection initiation (CI). As in previous HWT experiments, the CI study was a collaborative effort between forecasters and researchers, with equal emphasis on experimental forecasting strategies and evaluation of prototype model guidance products. The overarching goal of the CI effort was to identify the primary challenges of the CI forecasting problem and to establish a framework for additional studies and possible routine forecasting of CI. This study confirms that convection-allowing models with grid spacing ~4 km represent many aspects of the formation and development of deep convection clouds explicitly and with predictive utility. Further, it shows that automated algorithms can skillfully identify the CI process during model integration. However, it also reveals that automated detection of individual convection cells, by itself, provides inadequate guidance for the disruptive potential of deep convection activity. Thus, future work on the CI forecasting problem should be couched in terms of convection-event prediction rather than detection and prediction of individual convection cells.

Full access
Bart Geerts, David Parsons, Conrad L. Ziegler, Tammy M. Weckwerth, Michael I. Biggerstaff, Richard D. Clark, Michael C. Coniglio, Belay B. Demoz, Richard A. Ferrare, William A. Gallus Jr., Kevin Haghi, John M. Hanesiak, Petra M. Klein, Kevin R. Knupp, Karen Kosiba, Greg M. McFarquhar, James A. Moore, Amin R. Nehrir, Matthew D. Parker, James O. Pinto, Robert M. Rauber, Russ S. Schumacher, David D. Turner, Qing Wang, Xuguang Wang, Zhien Wang, and Joshua Wurman


The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.

To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.

Full access
Adam J. Clark, Steven J. Weiss, John S. Kain, Israel L. Jirak, Michael Coniglio, Christopher J. Melick, Christopher Siewert, Ryan A. Sobash, Patrick T. Marsh, Andrew R. Dean, Ming Xue, Fanyou Kong, Kevin W. Thomas, Yunheng Wang, Keith Brewster, Jidong Gao, Xuguang Wang, Jun Du, David R. Novak, Faye E. Barthold, Michael J. Bodner, Jason J. Levit, C. Bruce Entwistle, Tara L. Jensen, and James Correia Jr.

The NOAA Hazardous Weather Testbed (HWT) conducts annual spring forecasting experiments organized by the Storm Prediction Center and National Severe Storms Laboratory to test and evaluate emerging scientific concepts and technologies for improved analysis and prediction of hazardous mesoscale weather. A primary goal is to accelerate the transfer of promising new scientific concepts and tools from research to operations through the use of intensive real-time experimental forecasting and evaluation activities conducted during the spring and early summer convective storm period. The 2010 NOAA/HWT Spring Forecasting Experiment (SE2010), conducted 17 May through 18 June, had a broad focus, with emphases on heavy rainfall and aviation weather, through collaboration with the Hydrometeorological Prediction Center (HPC) and the Aviation Weather Center (AWC), respectively. In addition, using the computing resources of the National Institute for Computational Sciences at the University of Tennessee, the Center for Analysis and Prediction of Storms at the University of Oklahoma provided unprecedented real-time conterminous United States (CONUS) forecasts from a multimodel Storm-Scale Ensemble Forecast (SSEF) system with 4-km grid spacing and 26 members and from a 1-km grid spacing configuration of the Weather Research and Forecasting model. Several other organizations provided additional experimental high-resolution model output. This article summarizes the activities, insights, and preliminary findings from SE2010, emphasizing the use of the SSEF system and the successful collaboration with the HPC and AWC.

A supplement to this article is available online (DOI:10.1175/BAMS-D-11-00040.2)

Full access
Adam J. Clark, Israel L. Jirak, Burkely T. Gallo, Brett Roberts, Andrew R. Dean, Kent H. Knopfmeier, Louis J. Wicker, Makenzie Krocak, Patrick S. Skinner, Pamela L. Heinselman, Katie A. Wilson, Jake Vancil, Kimberly A. Hoogewind, Nathan A. Dahl, Gerald J. Creager, Thomas A. Jones, Jidong Gao, Yunheng Wang, Eric D. Loken, Montgomery Flora, Christopher A. Kerr, Nusrat Yussouf, Scott R. Dembek, William Miller, Joshua Martin, Jorge Guerra, Brian Matilla, David Jahn, David Harrison, David Imy, and Michael C. Coniglio
Full access