Search Results

You are looking at 41 - 50 of 55 items for

  • Author or Editor: P. A. Miller x
  • Refine by Access: All Content x
Clear All Modify Search
Jian Wang
,
Rob Wood
,
Michael P. Jensen
,
J. Christine Chiu
,
Yangang Liu
,
Katia Lamer
,
Neel Desai
,
Scott E. Giangrande
,
Daniel A. Knopf
,
Pavlos Kollias
,
Alexander Laskin
,
Xiaohong Liu
,
Chunsong Lu
,
David Mechem
,
Fan Mei
,
Mariusz Starzec
,
Jason Tomlinson
,
Yang Wang
,
Seong Soo Yum
,
Guangjie Zheng
,
Allison C. Aiken
,
Eduardo B. Azevedo
,
Yann Blanchard
,
Swarup China
,
Xiquan Dong
,
Francesca Gallo
,
Sinan Gao
,
Virendra P. Ghate
,
Susanne Glienke
,
Lexie Goldberger
,
Joseph C. Hardin
,
Chongai Kuang
,
Edward P. Luke
,
Alyssa A. Matthews
,
Mark A. Miller
,
Ryan Moffet
,
Mikhail Pekour
,
Beat Schmid
,
Arthur J. Sedlacek
,
Raymond A. Shaw
,
John E. Shilling
,
Amy Sullivan
,
Kaitlyn Suski
,
Daniel P. Veghte
,
Rodney Weber
,
Matt Wyant
,
Jaemin Yeom
,
Maria Zawadowicz
, and
Zhibo Zhang

Abstract

With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from 21 June to 20 July 2017 and from 15 January to 18 February 2018 in the Azores. The flights were designed to maximize the synergy between in situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Finally, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them.

Full access
David J. Diner
,
Thomas P. Ackerman
,
Theodore L. Anderson
,
Jens Bösenberg
,
Amy J. Braverman
,
Robert J. Charlson
,
William D. Collins
,
Roger Davies
,
Brent N. Holben
,
Chris A . Hostetler
,
Ralph A. Kahn
,
John V. Martonchik
,
Robert T. Menzies
,
Mark A. Miller
,
John A. Ogren
,
Joyce E. Penner
,
Philip J. Rasch
,
Stephen E. Schwartz
,
John H. Seinfeld
,
Graeme L. Stephens
,
Omar Torres
,
Larry D. Travis
,
Bruce A . Wielicki
, and
Bin Yu

Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the longterm benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, interagency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality.

Full access
S. T. Martin
,
P. Artaxo
,
L. Machado
,
A. O. Manzi
,
R. A. F. Souza
,
C. Schumacher
,
J. Wang
,
T. Biscaro
,
J. Brito
,
A. Calheiros
,
K. Jardine
,
A. Medeiros
,
B. Portela
,
S. S. de Sá
,
K. Adachi
,
A. C. Aiken
,
R. Albrecht
,
L. Alexander
,
M. O. Andreae
,
H. M. J. Barbosa
,
P. Buseck
,
D. Chand
,
J. M. Comstock
,
D. A. Day
,
M. Dubey
,
J. Fan
,
J. Fast
,
G. Fisch
,
E. Fortner
,
S. Giangrande
,
M. Gilles
,
A. H. Goldstein
,
A. Guenther
,
J. Hubbe
,
M. Jensen
,
J. L. Jimenez
,
F. N. Keutsch
,
S. Kim
,
C. Kuang
,
A. Laskin
,
K. McKinney
,
F. Mei
,
M. Miller
,
R. Nascimento
,
T. Pauliquevis
,
M. Pekour
,
J. Peres
,
T. Petäjä
,
C. Pöhlker
,
U. Pöschl
,
L. Rizzo
,
B. Schmid
,
J. E. Shilling
,
M. A. Silva Dias
,
J. N. Smith
,
J. M. Tomlinson
,
J. Tóta
, and
M. Wendisch

Abstract

The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

Full access
Philip A. Feiner
,
William H. Brune
,
David O. Miller
,
Li Zhang
,
Ronald C. Cohen
,
Paul S. Romer
,
Allen H. Goldstein
,
Frank N. Keutsch
,
Kate M. Skog
,
Paul O. Wennberg
,
Tran B. Nguyen
,
Alex P. Teng
,
Joost DeGouw
,
Abigail Koss
,
Robert J. Wild
,
Steven S. Brown
,
Alex Guenther
,
Eric Edgerton
,
Karsten Baumann
, and
Juliane L. Fry

Abstract

The chemical species emitted by forests create complex atmospheric oxidation chemistry and influence global atmospheric oxidation capacity and climate. The Southern Oxidant and Aerosol Study (SOAS) provided an opportunity to test the oxidation chemistry in a forest where isoprene is the dominant biogenic volatile organic compound. Hydroxyl (OH) and hydroperoxyl (HO2) radicals were two of the hundreds of atmospheric chemical species measured, as was OH reactivity (the inverse of the OH lifetime). OH was measured by laser-induced fluorescence (LIF) and by taking the difference in signals without and with an OH scavenger that was added just outside the instrument’s pinhole inlet. To test whether the chemistry at SOAS can be simulated by current model mechanisms, OH and HO2 were evaluated with a box model using two chemical mechanisms: Master Chemical Mechanism, version 3.2 (MCMv3.2), augmented with explicit isoprene chemistry and MCMv3.3.1. Measured and modeled OH peak at about 106 cm−3 and agree well within combined uncertainties. Measured and modeled HO2 peak at about 27 pptv and also agree well within combined uncertainties. Median OH reactivity cycled between about 11 s−1 at dawn and about 26 s−1 during midafternoon. A good test of the oxidation chemistry is the balance between OH production and loss rates using measurements; this balance was observed to within uncertainties. These SOAS results provide strong evidence that the current isoprene mechanisms are consistent with measured OH and HO2 and, thus, capture significant aspects of the atmospheric oxidation chemistry in this isoprene-rich forest.

Full access
David M. Tratt
,
John A. Hackwell
,
Bonnie L. Valant-Spaight
,
Richard L. Walterscheid
,
Lynette J. Gelinas
,
James H. Hecht
,
Charles M. Swenson
,
Caleb P. Lampen
,
M. Joan Alexander
,
Lars Hoffmann
,
David S. Nolan
,
Steven D. Miller
,
Jeffrey L. Hall
,
Robert Atlas
,
Frank D. Marks Jr.
, and
Philip T. Partain

Abstract

The prediction of tropical cyclone rapid intensification is one of the most pressing unsolved problems in hurricane forecasting. The signatures of gravity waves launched by strong convective updrafts are often clearly seen in airglow and carbon dioxide thermal emission spectra under favorable atmospheric conditions. By continuously monitoring the Atlantic hurricane belt from the main development region to the vulnerable sections of the continental United States at high cadence, it will be possible to investigate the utility of storm-induced gravity wave observations for the diagnosis of impending storm intensification. Such a capability would also enable significant improvements in our ability to characterize the 3D transient behavior of upper-atmospheric gravity waves and point the way to future observing strategies that could mitigate the risk to human life caused by severe storms. This paper describes a new mission concept involving a midinfrared imager hosted aboard a geostationary satellite positioned at approximately 80°W longitude. The sensor’s 3-km pixel size ensures that the gravity wave horizontal structure is adequately resolved, while a 30-s refresh rate enables improved definition of the dynamic intensification process. In this way the transient development of gravity wave perturbations caused by both convective and cyclonic storms may be discerned in near–real time.

Full access
Jerald A. Brotzge
,
J. Wang
,
C. D. Thorncroft
,
E. Joseph
,
N. Bain
,
N. Bassill
,
N. Farruggio
,
J. M. Freedman
,
K. Hemker Jr.
,
D. Johnston
,
E. Kane
,
S. McKim
,
S. D. Miller
,
J. R. Minder
,
P. Naple
,
S. Perez
,
James J. Schwab
,
M. J. Schwab
, and
J. Sicker

Abstract

The New York State Mesonet (NYSM) is a network of 126 standard environmental monitoring stations deployed statewide with an average spacing of 27 km. The primary goal of the NYSM is to provide high-quality weather data at high spatial and temporal scales to improve atmospheric monitoring and prediction, especially for extreme weather events. As compared with other statewide networks, the NYSM faced considerable deployment obstacles with New York’s complex terrain, forests, and very rural and urban areas; its wide range of weather extremes; and its harsh winter conditions. To overcome these challenges, the NYSM adopted a number of innovations unique among statewide monitoring systems, including 1) strict adherence to international siting standards and metadata documentation; 2) a hardened system design to facilitate continued operations during extreme, high-impact weather; 3) a station design optimized to monitor winter weather conditions; and 4) a camera installed at every site to aid situational awareness. The network was completed in spring of 2018 and provides data and products to a variety of sectors including weather monitoring and forecasting, emergency management, agriculture, transportation, utilities, and education. This paper focuses on the standard network of the NYSM and reviews the network siting, site configuration, sensors, site communications and power, network operations and maintenance, data quality control, and dissemination. A few example analyses are shown that highlight the benefits of the NYSM.

Full access
J. S. Reid
,
H. B. Maring
,
G. T. Narisma
,
S. van den Heever
,
L. Di Girolamo
,
R. Ferrare
,
P. Lawson
,
G. G. Mace
,
J. B. Simpas
,
S. Tanelli
,
L. Ziemba
,
B. van Diedenhoven
,
R. Bruintjes
,
A. Bucholtz
,
B. Cairns
,
M. O. Cambaliza
,
G. Chen
,
G. S. Diskin
,
J. H. Flynn
,
C. A. Hostetler
,
R. E. Holz
,
T. J. Lang
,
K. S. Schmidt
,
G. Smith
,
A. Sorooshian
,
E. J. Thompson
,
K. L. Thornhill
,
C. Trepte
,
J. Wang
,
S. Woods
,
S. Yoon
,
M. Alexandrov
,
S. Alvarez
,
C. G. Amiot
,
J. R. Bennett
,
M. Brooks
,
S. P. Burton
,
E. Cayanan
,
H. Chen
,
A. Collow
,
E. Crosbie
,
A. DaSilva
,
J. P. DiGangi
,
D. D. Flagg
,
S. W. Freeman
,
D. Fu
,
E. Fukada
,
M. R. A. Hilario
,
Y. Hong
,
S. M. Hristova-Veleva
,
R. Kuehn
,
R. S. Kowch
,
G. R. Leung
,
J. Loveridge
,
K. Meyer
,
R. M. Miller
,
M. J. Montes
,
J. N. Moum
,
A. Nenes
,
S. W. Nesbitt
,
M. Norgren
,
E. P. Nowottnick
,
R. M. Rauber
,
E. A. Reid
,
S. Rutledge
,
J. S. Schlosser
,
T. T. Sekiyama
,
M. A. Shook
,
G. A. Sokolowsky
,
S. A. Stamnes
,
T. Y. Tanaka
,
A. Wasilewski
,
P. Xian
,
Q. Xiao
,
Zhuocan Xu
, and
J. Zavaleta

Abstract

The NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) employed the NASA P-3, Stratton Park Engineering Company (SPEC) Learjet 35, and a host of satellites and surface sensors to characterize the coupling of aerosol processes, cloud physics, and atmospheric radiation within the Maritime Continent’s complex southwest monsoonal environment. Conducted in the late summer of 2019 from Luzon, Philippines, in conjunction with the Office of Naval Research Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment with its R/V Sally Ride stationed in the northwestern tropical Pacific, CAMP2Ex documented diverse biomass burning, industrial and natural aerosol populations, and their interactions with small to congestus convection. The 2019 season exhibited El Niño conditions and associated drought, high biomass burning emissions, and an early monsoon transition allowing for observation of pristine to massively polluted environments as they advected through intricate diurnal mesoscale and radiative environments into the monsoonal trough. CAMP2Ex’s preliminary results indicate 1) increasing aerosol loadings tend to invigorate congestus convection in height and increase liquid water paths; 2) lidar, polarimetry, and geostationary Advanced Himawari Imager remote sensing sensors have skill in quantifying diverse aerosol and cloud properties and their interaction; and 3) high-resolution remote sensing technologies are able to greatly improve our ability to evaluate the radiation budget in complex cloud systems. Through the development of innovative informatics technologies, CAMP2Ex provides a benchmark dataset of an environment of extremes for the study of aerosol, cloud, and radiation processes as well as a crucible for the design of future observing systems.

Open access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager
Full access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Alex O. Gonzalez
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager

Abstract

Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere–ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.

Free access
M. Ades
,
R. Adler
,
Rob Allan
,
R. P. Allan
,
J. Anderson
,
Anthony Argüez
,
C. Arosio
,
J. A. Augustine
,
C. Azorin-Molina
,
J. Barichivich
,
J. Barnes
,
H. E. Beck
,
Andreas Becker
,
Nicolas Bellouin
,
Angela Benedetti
,
David I. Berry
,
Stephen Blenkinsop
,
Olivier. Bock
,
Michael G. Bosilovich
,
Olivier. Boucher
,
S. A. Buehler
,
Laura. Carrea
,
Hanne H. Christiansen
,
F. Chouza
,
John R. Christy
,
E.-S. Chung
,
Melanie Coldewey-Egbers
,
Gil P. Compo
,
Owen R. Cooper
,
Curt Covey
,
A. Crotwell
,
Sean M. Davis
,
Elvira de Eyto
,
Richard A. M de Jeu
,
B.V. VanderSat
,
Curtis L. DeGasperi
,
Doug Degenstein
,
Larry Di Girolamo
,
Martin T. Dokulil
,
Markus G. Donat
,
Wouter A. Dorigo
,
Imke Durre
,
Geoff S. Dutton
,
G. Duveiller
,
James W. Elkins
,
Vitali E. Fioletov
,
Johannes Flemming
,
Michael J. Foster
,
Richard A. Frey
,
Stacey M. Frith
,
Lucien Froidevaux
,
J. Garforth
,
S. K. Gupta
,
Leopold Haimberger
,
Brad D. Hall
,
Ian Harris
,
Andrew K Heidinger
,
D. L. Hemming
,
Shu-peng (Ben) Ho
,
Daan Hubert
,
Dale F. Hurst
,
I. Hüser
,
Antje Inness
,
K. Isaksen
,
Viju John
,
Philip D. Jones
,
J. W. Kaiser
,
S. Kelly
,
S. Khaykin
,
R. Kidd
,
Hyungiun Kim
,
Z. Kipling
,
B. M. Kraemer
,
D. P. Kratz
,
R. S. La Fuente
,
Xin Lan
,
Kathleen O. Lantz
,
T. Leblanc
,
Bailing Li
,
Norman G Loeb
,
Craig S. Long
,
Diego Loyola
,
Wlodzimierz Marszelewski
,
B. Martens
,
Linda May
,
Michael Mayer
,
M. F. McCabe
,
Tim R. McVicar
,
Carl A. Mears
,
W. Paul Menzel
,
Christopher J. Merchant
,
Ben R. Miller
,
Diego G. Miralles
,
Stephen A. Montzka
,
Colin Morice
,
Jens Mühle
,
R. Myneni
,
Julien P. Nicolas
,
Jeannette Noetzli
,
Tim J. Osborn
,
T. Park
,
A. Pasik
,
Andrew M. Paterson
,
Mauri S. Pelto
,
S. Perkins-Kirkpatrick
,
G. Pétron
,
C. Phillips
,
Bernard Pinty
,
S. Po-Chedley
,
L. Polvani
,
W. Preimesberger
,
M. Pulkkanen
,
W. J. Randel
,
Samuel Rémy
,
L. Ricciardulli
,
A. D. Richardson
,
L. Rieger
,
David A. Robinson
,
Matthew Rodell
,
Karen H. Rosenlof
,
Chris Roth
,
A. Rozanov
,
James A. Rusak
,
O. Rusanovskaya
,
T. Rutishäuser
,
Ahira Sánchez-Lugo
,
P. Sawaengphokhai
,
T. Scanlon
,
Verena Schenzinger
,
S. Geoffey Schladow
,
R. W Schlegel
,
Eawag Schmid, Martin
,
H. B. Selkirk
,
S. Sharma
,
Lei Shi
,
S. V. Shimaraeva
,
E. A. Silow
,
Adrian J. Simmons
,
C. A. Smith
,
Sharon L Smith
,
B. J. Soden
,
Viktoria Sofieva
,
T. H. Sparks
,
Paul W. Stackhouse Jr.
,
Wolfgang Steinbrecht
,
Dimitri A. Streletskiy
,
G. Taha
,
Hagen Telg
,
S. J. Thackeray
,
M. A. Timofeyev
,
Kleareti Tourpali
,
Mari R. Tye
,
Ronald J. van der A
,
Robin, VanderSat B.V. van der Schalie
,
Gerard van der SchrierW. Paul
,
Guido R. van der Werf
,
Piet Verburg
,
Jean-Paul Vernier
,
Holger Vömel
,
Russell S. Vose
,
Ray Wang
,
Shohei G. Watanabe
,
Mark Weber
,
Gesa A. Weyhenmeyer
,
David Wiese
,
Anne C. Wilber
,
Jeanette D. Wild
,
Takmeng Wong
,
R. Iestyn Woolway
,
Xungang Yin
,
Lin Zhao
,
Guanguo Zhao
,
Xinjia Zhou
,
Jerry R. Ziemke
, and
Markus Ziese
Free access