Search Results
You are looking at 41 - 50 of 64 items for
- Author or Editor: Pavlos Kollias x
- Refine by Access: All Content x
Abstract
The observation and representation in general circulation models (GCMs) of cloud vertical overlap are the objects of active research due to their impacts on the earth’s radiative budget. Previous studies have found that vertically contiguous cloudy layers show a maximum overlap between layers up to several kilometers apart but tend toward a random overlap as separations increase. The decorrelation length scale that characterizes the progressive transition from maximum to random overlap changes from one location and season to another and thus may be influenced by large-scale vertical motion, wind shear, or convection. Observations from the U.S. Department of Energy Atmospheric Radiation Measurement program ground-based radars and lidars in midlatitude and tropical locations in combination with reanalysis meteorological fields are used to evaluate how dynamics and atmospheric state influence cloud overlap. For midlatitude winter months, strong synoptic-scale upward motion maintains conditions closer to maximum overlap at large separations. In the tropics, overlap becomes closer to maximum as convective stability decreases. In midlatitude subsidence and tropical convectively stable situations, where a smooth transition from maximum to random overlap is found on average, large wind shears sometimes favor minimum overlap. Precipitation periods are discarded from the analysis but, when included, maximum overlap occurs more often at large separations. The results suggest that a straightforward modification of the existing GCM mixed maximum–random overlap parameterization approach that accounts for environmental conditions can capture much of the important variability and is more realistic than approaches that are only based on an exponential decay transition from maximum to random overlap.
Abstract
The observation and representation in general circulation models (GCMs) of cloud vertical overlap are the objects of active research due to their impacts on the earth’s radiative budget. Previous studies have found that vertically contiguous cloudy layers show a maximum overlap between layers up to several kilometers apart but tend toward a random overlap as separations increase. The decorrelation length scale that characterizes the progressive transition from maximum to random overlap changes from one location and season to another and thus may be influenced by large-scale vertical motion, wind shear, or convection. Observations from the U.S. Department of Energy Atmospheric Radiation Measurement program ground-based radars and lidars in midlatitude and tropical locations in combination with reanalysis meteorological fields are used to evaluate how dynamics and atmospheric state influence cloud overlap. For midlatitude winter months, strong synoptic-scale upward motion maintains conditions closer to maximum overlap at large separations. In the tropics, overlap becomes closer to maximum as convective stability decreases. In midlatitude subsidence and tropical convectively stable situations, where a smooth transition from maximum to random overlap is found on average, large wind shears sometimes favor minimum overlap. Precipitation periods are discarded from the analysis but, when included, maximum overlap occurs more often at large separations. The results suggest that a straightforward modification of the existing GCM mixed maximum–random overlap parameterization approach that accounts for environmental conditions can capture much of the important variability and is more realistic than approaches that are only based on an exponential decay transition from maximum to random overlap.
Abstract
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) program operates millimeter-wavelength cloud radars (MMCRs) in several specific locations within different climatological regimes. These vertically pointing cloud profiling radars supply the three most important Doppler spectrum moment estimates, which are the radar reflectivity (or zero moment), the mean Doppler velocity (or first moment), and the Doppler spectrum width (or second moment), as a function of time and height. The ARM MMCR Doppler moment estimates form the basis of a number of algorithms for retrieving cloud microphysical and radiative properties. The retrieval algorithms are highly sensitive to the quality and accuracy of the MMCR Doppler moment estimates. The significance of these sensitivities should not be underestimated, because the inherent physical variability of clouds, instrument-induced noise, and sampling strategy limitations all potentially introduce errors into the Doppler moment estimates. In this article, the accuracies of the first three Doppler moment estimates from the ARM MMCRs are evaluated for a set of typical cloud conditions from the three DOE ARM program sites. Results of the analysis suggest that significant errors in the Doppler moment estimates are possible in the current configurations of the ARM MMCRs. In particular, weakly reflecting clouds with low signal-to-noise ratios (SNRs), as well as turbulent clouds with nonzero updraft and downdraft velocities that are coupled with high SNR, are shown to produce degraded Doppler moment estimates in the current ARM MMCR operational mode processing strategies. Analysis of the Doppler moment estimates and MMCR receiver noise characteristics suggests that the introduction of a set of quality control criteria is necessary for identifying periods of degraded receiver performance that leads to larger uncertainties in the Doppler moment estimates. Moreover, the temporal sampling of the ARM MMCRs was found to be insufficient for representing the actual dynamical states in many types of clouds, especially boundary layer clouds. New digital signal processors (DSPs) are currently being developed for the ARM MMCRs. The findings presented in this study will be used in the design of a new set of operational strategies for the ARM MMCRs once they have been upgraded with the new DSPs.
Abstract
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) program operates millimeter-wavelength cloud radars (MMCRs) in several specific locations within different climatological regimes. These vertically pointing cloud profiling radars supply the three most important Doppler spectrum moment estimates, which are the radar reflectivity (or zero moment), the mean Doppler velocity (or first moment), and the Doppler spectrum width (or second moment), as a function of time and height. The ARM MMCR Doppler moment estimates form the basis of a number of algorithms for retrieving cloud microphysical and radiative properties. The retrieval algorithms are highly sensitive to the quality and accuracy of the MMCR Doppler moment estimates. The significance of these sensitivities should not be underestimated, because the inherent physical variability of clouds, instrument-induced noise, and sampling strategy limitations all potentially introduce errors into the Doppler moment estimates. In this article, the accuracies of the first three Doppler moment estimates from the ARM MMCRs are evaluated for a set of typical cloud conditions from the three DOE ARM program sites. Results of the analysis suggest that significant errors in the Doppler moment estimates are possible in the current configurations of the ARM MMCRs. In particular, weakly reflecting clouds with low signal-to-noise ratios (SNRs), as well as turbulent clouds with nonzero updraft and downdraft velocities that are coupled with high SNR, are shown to produce degraded Doppler moment estimates in the current ARM MMCR operational mode processing strategies. Analysis of the Doppler moment estimates and MMCR receiver noise characteristics suggests that the introduction of a set of quality control criteria is necessary for identifying periods of degraded receiver performance that leads to larger uncertainties in the Doppler moment estimates. Moreover, the temporal sampling of the ARM MMCRs was found to be insufficient for representing the actual dynamical states in many types of clouds, especially boundary layer clouds. New digital signal processors (DSPs) are currently being developed for the ARM MMCRs. The findings presented in this study will be used in the design of a new set of operational strategies for the ARM MMCRs once they have been upgraded with the new DSPs.
Abstract
The scanning Atmospheric Radiation Measurement (ARM) Program cloud radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20–30-km radius of the ARM fixed and mobile sites. Here, the postprocessing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the hemispherical sky range–height indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step toward the utilization of SACR measurements for cloud research.
Abstract
The scanning Atmospheric Radiation Measurement (ARM) Program cloud radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20–30-km radius of the ARM fixed and mobile sites. Here, the postprocessing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the hemispherical sky range–height indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step toward the utilization of SACR measurements for cloud research.
Abstract
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scale horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation.
The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.
Abstract
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scale horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation.
The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.
Abstract
An engaged scholarship project called “Snowflake Selfies” was developed and implemented in an upper-level undergraduate course at The Pennsylvania State University (Penn State). During the project, students conducted research on snow using low-cost, low-tech instrumentation that may be readily implemented broadly and scaled as needed, particularly at institutions with limited resources. During intensive observing periods (IOPs), students measured snowfall accumulations, snow-to-liquid ratios, and took microscopic photographs of snow using their smartphones. These observations were placed in meteorological context using radar observations and thermodynamic soundings, helping to reinforce concepts from atmospheric thermodynamics, cloud physics, radar, and mesoscale meteorology courses. Students also prepared a term paper and presentation using their datasets/photographs to hone communication skills. Examples from IOPs are presented. The Snowflake Selfies project was well received by undergraduate students as part of the writing-intensive course at Penn State. Responses to survey questions highlight the project’s effectiveness at engaging students and increasing their enthusiasm for the semester-long project. The natural link to social media broadened engagement to the community level. Given the successes at Penn State, we encourage Snowflake Selfies or similar projects to be adapted or implemented at other institutions.
Abstract
An engaged scholarship project called “Snowflake Selfies” was developed and implemented in an upper-level undergraduate course at The Pennsylvania State University (Penn State). During the project, students conducted research on snow using low-cost, low-tech instrumentation that may be readily implemented broadly and scaled as needed, particularly at institutions with limited resources. During intensive observing periods (IOPs), students measured snowfall accumulations, snow-to-liquid ratios, and took microscopic photographs of snow using their smartphones. These observations were placed in meteorological context using radar observations and thermodynamic soundings, helping to reinforce concepts from atmospheric thermodynamics, cloud physics, radar, and mesoscale meteorology courses. Students also prepared a term paper and presentation using their datasets/photographs to hone communication skills. Examples from IOPs are presented. The Snowflake Selfies project was well received by undergraduate students as part of the writing-intensive course at Penn State. Responses to survey questions highlight the project’s effectiveness at engaging students and increasing their enthusiasm for the semester-long project. The natural link to social media broadened engagement to the community level. Given the successes at Penn State, we encourage Snowflake Selfies or similar projects to be adapted or implemented at other institutions.
Abstract
The Brookhaven National Laboratory Center for Multiscale Applied Sensing (CMAS) aims to address environmental equity needs in the context of a changing climate. As a first step toward this goal, the center developed a one-of-a-kind observatory tailored to the study of highly heterogeneous urban environments. This article describes the features of the mobile observatory that enable its rapid deployment either on or off the power grid, as well as its instrument payload. Beyond its unique design, the observatory optimizes data collection within the obstacle-laden urban environment using a new smart sampling paradigm. This setup facilitated the collection of previously poorly documented environmental properties, including wind profiles throughout the atmospheric column. The mobile observatory captured unique observations during its first few intensive observation periods. Vertical air motion and infrared temperature measurements collected along the faces of the supertall One Vanderbilt skyscraper in Manhattan, NY, reveal how solar and anthropogenic heating affect wind flow and thus the venting of heat, pollution, and contaminants in urban street canyons. Also, air temperature measurements collected during travel along a 150-km transect between Upton and Manhattan, NY, offer a high-resolution view of the urban heat island and reveal that temperature disparities also exist within the city across different neighborhoods. Ultimately, the datasets collected by CMAS are poised to help guide equitable urban planning by highlighting existing disparities and characterizing the impact of urban features on the urban microclimate with the goal of improving human comfort.
Abstract
The Brookhaven National Laboratory Center for Multiscale Applied Sensing (CMAS) aims to address environmental equity needs in the context of a changing climate. As a first step toward this goal, the center developed a one-of-a-kind observatory tailored to the study of highly heterogeneous urban environments. This article describes the features of the mobile observatory that enable its rapid deployment either on or off the power grid, as well as its instrument payload. Beyond its unique design, the observatory optimizes data collection within the obstacle-laden urban environment using a new smart sampling paradigm. This setup facilitated the collection of previously poorly documented environmental properties, including wind profiles throughout the atmospheric column. The mobile observatory captured unique observations during its first few intensive observation periods. Vertical air motion and infrared temperature measurements collected along the faces of the supertall One Vanderbilt skyscraper in Manhattan, NY, reveal how solar and anthropogenic heating affect wind flow and thus the venting of heat, pollution, and contaminants in urban street canyons. Also, air temperature measurements collected during travel along a 150-km transect between Upton and Manhattan, NY, offer a high-resolution view of the urban heat island and reveal that temperature disparities also exist within the city across different neighborhoods. Ultimately, the datasets collected by CMAS are poised to help guide equitable urban planning by highlighting existing disparities and characterizing the impact of urban features on the urban microclimate with the goal of improving human comfort.