Search Results

You are looking at 41 - 49 of 49 items for

  • Author or Editor: Peter A. Stott x
  • Refine by Access: All Content x
Clear All Modify Search
Jianping Duan, Liang Chen, Lun Li, Peili Wu, Nikolaos Christidis, Zhuguo Ma, Fraser C. Lott, Andrew Ciavarella, and Peter A. Stott
Full access
Peter A. Stott, John F. B. Mitchell, Myles R. Allen, Thomas L. Delworth, Jonathan M. Gregory, Gerald A. Meehl, and Benjamin D. Santer

Abstract

This paper investigates the impact of aerosol forcing uncertainty on the robustness of estimates of the twentieth-century warming attributable to anthropogenic greenhouse gas emissions. Attribution analyses on three coupled climate models with very different sensitivities and aerosol forcing are carried out. The Third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3), Parallel Climate Model (PCM), and GFDL R30 models all provide good simulations of twentieth-century global mean temperature changes when they include both anthropogenic and natural forcings. Such good agreement could result from a fortuitous cancellation of errors, for example, by balancing too much (or too little) greenhouse warming by too much (or too little) aerosol cooling.

Despite a very large uncertainty for estimates of the possible range of sulfate aerosol forcing obtained from measurement campaigns, results show that the spatial and temporal nature of observed twentieth-century temperature change constrains the component of past warming attributable to anthropogenic greenhouse gases to be significantly greater (at the 5% level) than the observed warming over the twentieth century. The cooling effects of aerosols are detected in all three models.

Both spatial and temporal aspects of observed temperature change are responsible for constraining the relative roles of greenhouse warming and sulfate cooling over the twentieth century. This is because there are distinctive temporal structures in differential warming rates between the hemispheres, between land and ocean, and between mid- and low latitudes. As a result, consistent estimates of warming attributable to greenhouse gas emissions are obtained from all three models, and predictions are relatively robust to the use of more or less sensitive models. The transient climate response following a 1% yr−1 increase in CO2 is estimated to lie between 2.2 and 4 K century−1 (5–95 percentiles).

Full access
Nikolaos Christidis, Peter A. Stott, Adam A. Scaife, Alberto Arribas, Gareth S. Jones, Dan Copsey, Jeff R. Knight, and Warren J. Tennant

Abstract

A new system for attribution of weather and climate extreme events has been developed based on the atmospheric component of the latest Hadley Centre model. The model is run with either observational data of sea surface temperature and sea ice or estimates of what their values would be without the effect of anthropogenic climatic forcings. In that way, ensembles of simulations are produced that represent the climate with and without the effect of human influences. A comparison between the ensembles provides estimates of the change in the frequency of extremes due to anthropogenic forcings. To evaluate the new system, reliability diagrams are constructed, which compare the model-derived probability of extreme events with their observed frequency. The ability of the model to reproduce realistic distributions of relevant climatic variables is another key aspect of the system evaluation. Results are then presented from analyses of three recent high-impact events: the 2009/10 cold winter in the United Kingdom, the heat wave in Moscow in July 2010, and floods in Pakistan in July 2010. An evaluation assessment indicates the model can provide reliable results for the U.K. and Moscow events but not for Pakistan. It is found that without anthropogenic forcings winters in the United Kingdom colder than 2009/10 would be 7–10 times (best estimate) more common. Although anthropogenic forcings increase the likelihood of heat waves in Moscow, the 2010 event is found to be very uncommon and associated with a return time of several hundred years. No reliable attribution assessment can be made for high-precipitation events in Pakistan.

Full access
Shuangmei Ma, Tianjun Zhou, Dáithí A. Stone, Debbie Polson, Aiguo Dai, Peter A. Stott, Hans von Storch, Yun Qian, Claire Burke, Peili Wu, Liwei Zou, and Andrew Ciavarella

Abstract

Changes in precipitation characteristics directly affect society through their impacts on drought and floods, hydro-dams, and urban drainage systems. Global warming increases the water holding capacity of the atmosphere and thus the risk of heavy precipitation. Here, daily precipitation records from over 700 Chinese stations from 1956 to 2005 are analyzed. The results show a significant shift from light to heavy precipitation over eastern China. An optimal fingerprinting analysis of simulations from 11 climate models driven by different combinations of historical anthropogenic (greenhouse gases, aerosols, land use, and ozone) and natural (volcanic and solar) forcings indicates that anthropogenic forcing on climate, including increases in greenhouse gases (GHGs), has had a detectable contribution to the observed shift toward heavy precipitation. Some evidence is found that anthropogenic aerosols (AAs) partially offset the effect of the GHG forcing, resulting in a weaker shift toward heavy precipitation in simulations that include the AA forcing than in simulations with only the GHG forcing. In addition to the thermodynamic mechanism, strengthened water vapor transport from the adjacent oceans and by midlatitude westerlies, resulting mainly from GHG-induced warming, also favors heavy precipitation over eastern China. Further GHG-induced warming is predicted to lead to an increasing shift toward heavy precipitation, leading to increased urban flooding and posing a significant challenge for mega-cities in China in the coming decades. Future reductions in AA emissions resulting from air pollution controls could exacerbate this tendency toward heavier precipitation.

Full access
Seung-Ki Min, Min-Gyu Seong, Dong-Hyun Cha, Minkyu Lee, Fraser C. Lott, Andrew Ciavarella, Peter A. Stott, Maeng-Ki Kim, Kyung-On Boo, and Young-Hwa Byun
Full access
Y. T. Eunice Lo, Daniel M. Mitchell, Sylvia I. Bohnenstengel, Mat Collins, Ed Hawkins, Gabriele C. Hegerl, Manoj Joshi, and Peter A. Stott

Abstract

In the United Kingdom, where 90% of residents are projected to live in urban areas by 2050, projecting changes in urban heat islands (UHIs) is essential to municipal adaptation. Increased summer temperatures are linked to increased mortality. Using the new regional U.K. Climate Projections, UKCP18-regional, we estimate the 1981–2079 trends in summer urban and rural near-surface air temperatures and in UHI intensities during day and at night in the 10 most populous built-up areas in England. Summer temperatures increase by 0.45°–0.81°C per decade under RCP8.5, depending on the time of day and location. Nighttime temperatures increase more in urban than rural areas, enhancing the nighttime UHI by 0.01°–0.05°C per decade in all cities. When these upward UHI signals emerge from 2008–18 variability, positive summer nighttime UHI intensities of up to 1.8°C are projected in most cities. However, we can prevent most of these upward nighttime UHI signals from emerging by stabilizing climate to the Paris Agreement target of 2°C above preindustrial levels. In contrast, daytime UHI intensities decrease in nine cities, at rates between −0.004° and −0.05°C per decade, indicating a trend toward a reduced daytime UHI effect. These changes reflect different feedbacks over urban and rural areas and are specific to UKCP18-regional. Future research is important to better understand the drivers of these UHI intensity changes.

Free access
Peter W. Thorne, Kate M. Willett, Rob J. Allan, Stephan Bojinski, John R. Christy, Nigel Fox, Simon Gilbert, Ian Jolliffe, John J. Kennedy, Elizabeth Kent, Albert Klein Tank, Jay Lawrimore, David E. Parker, Nick Rayner, Adrian Simmons, Lianchun Song, Peter A. Stott, and Blair Trewin

No abstract available.

Full access
Adam A. Scaife, Elizabeth Good, Ying Sun, Zhongwei Yan, Nick Dunstone, Hong-Li Ren, Chaofan Li, Riyu Lu, Peili Wu, Zongjian Ke, Zhuguo Ma, Kalli Furtado, Tongwen Wu, Tianjun Zhou, Tyrone Dunbar, Chris Hewitt, Nicola Golding, Peiqun Zhang, Rob Allan, Kirstine Dale, Fraser C. Lott, Peter A. Stott, Sean Milton, Lianchun Song, and Stephen Belcher

Abstract

We present results from the first 6 years of this major U.K. government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between U.K. and Chinese climate scientists, and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modeling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over 300 peer reviewed studies generated jointly by U.K. and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skillful predictions of important aspects of Chinese climate such as East Asian summer monsoon rainfall. In addition, the development of improved modeling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real-time climate services. Participation of dozens of institutes through subprojects in this program, which is governed by the Met Office Hadley Centre, the China Meteorological Administration, and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.

Full access
Gabriele C. Hegerl, Emily Black, Richard P. Allan, William J. Ingram, Debbie Polson, Kevin E. Trenberth, Robin S. Chadwick, Phillip A. Arkin, Beena Balan Sarojini, Andreas Becker, Aiguo Dai, Paul J. Durack, David Easterling, Hayley J. Fowler, Elizabeth J. Kendon, George J. Huffman, Chunlei Liu, Robert Marsh, Mark New, Timothy J. Osborn, Nikolaos Skliris, Peter A. Stott, Pier-Luigi Vidale, Susan E. Wijffels, Laura J. Wilcox, Kate M. Willett, and Xuebin Zhang

Abstract

Understanding observed changes to the global water cycle is key to predicting future climate changes and their impacts. While many datasets document crucial variables such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for determining long-term changes. In situ networks provide long time series over land, but are sparse in many regions, particularly the tropics. Satellite and reanalysis datasets provide global coverage, but their long-term stability is lacking. However, comparisons of changes among related variables can give insights into the robustness of observed changes. For example, ocean salinity, interpreted with an understanding of ocean processes, can help cross-validate precipitation. Observational evidence for human influences on the water cycle is emerging, but uncertainties resulting from internal variability and observational errors are too large to determine whether the observed and simulated changes are consistent. Improvements to the in situ and satellite observing networks that monitor the changing water cycle are required, yet continued data coverage is threatened by funding reductions. Uncertainty both in the role of anthropogenic aerosols and because of the large climate variability presently limits confidence in attribution of observed changes.

Full access