Search Results

You are looking at 41 - 50 of 62 items for

  • Author or Editor: Ping Huang x
  • Refine by Access: All Content x
Clear All Modify Search
Yan Du
,
Shang-Ping Xie
,
Gang Huang
, and
Kaiming Hu

Abstract

El Niño induces a basin-wide increase in tropical Indian Ocean (TIO) sea surface temperature (SST) with a lag of one season. The north IO (NIO), in particular, displays a peculiar double-peak warming with the second peak larger in magnitude and persisting well through the summer. Motivated by recent studies suggesting the importance of the TIO warming for the Northwest Pacific and East Asian summer monsoons, the present study investigates the mechanisms for the second peak of the NIO warming using observations and general circulation models. This analysis reveals that internal air–sea interaction within the TIO is key to sustaining the TIO warming through summer. During El Niño, anticyclonic wind curl anomalies force a downwelling Rossby wave in the south TIO through Walker circulation adjustments, causing a sustained SST warming in the tropical southwest IO (SWIO) where the mean thermocline is shallow. During the spring and early summer following El Niño, this SWIO warming sustains an antisymmetric pattern of atmospheric anomalies with northeasterly (northwesterly) wind anomalies north (south) of the equator. Over the NIO as the mean winds turn into southwesterly in May, the northeasterly anomalies force the second SST peak that persists through summer by reducing the wind speed and surface evaporation. Atmospheric general circulation model experiments show that the antisymmetric atmospheric pattern is a response to the TIO warming, suggestive of their mutual interaction. Thus, ocean dynamics and Rossby waves in particular are important for the warming not only locally in SWIO but also on the basin-scale north of the equator, a result with important implications for climate predictability and prediction.

Full access
Huei-Ping Huang
,
Andrew W. Robertson
,
Yochanan Kushnir
, and
Shiling Peng

Abstract

Hindcast experiments for the tropical Atlantic sea surface temperature (SST) gradient G1, defined as tropical North Atlantic SST anomaly minus tropical South Atlantic SST anomaly, are performed using an atmospheric general circulation model coupled to a mixed layer ocean over the Atlantic to quantify the contributions of the El Niño–Southern Oscillation (ENSO) forcing and the preconditioning in the Atlantic to G1 in boreal spring. The results confirm previous observational analyses that, in the years with a persistent ENSO SST anomaly from boreal winter to spring, the ENSO forcing plays a primary role in determining the tendency of G1 from winter to spring and the sign of G1 in late spring. In the hindcasts, the initial perturbations in Atlantic SST in boreal winter are found to generally persist beyond a season, leaving a secondary but nonnegligible contribution to the predicted Atlantic SST gradient in spring. For 1993/94, a neutral year with a large preexisting G1 in winter, the hindcast using the information of Atlantic preconditioning alone is found to reproduce the observed G1 in spring. The seasonal predictability in precipitation over South America is examined in the hindcast experiments. For the recent events that can be validated with high-quality observations, the hindcasts produced dryness in boreal spring 1983, wetness in spring 1996, and wetness in spring 1994 over northern Brazil that are qualitatively consistent with observations. An inclusion of the Atlantic preconditioning is found to help the prediction of South American rainfall in boreal spring. For the ENSO years, discrepancies remain between the hindcast and observed precipitation anomalies over northern and equatorial South America, an error that is partially attributed to the biased atmospheric response to ENSO forcing in the model. The hindcast of the 1993/94 neutral year does not suffer this error. It constitutes an intriguing example of useful seasonal forecast of G1 and South American rainfall anomalies without ENSO.

Full access
Chien-Ben Chou
,
Ching-Yuang Huang
,
Huei-Ping Huang
,
Kung-Hwa Wang
, and
Tien-Chiang Yeh

Abstract

In this study, the Advanced Microwave Sounding Unit (AMSU) data are used to retrieve the temperature and velocity fields of typhoons and assimilate them with the three-dimensional variational data assimilation (3DVAR) routines for uses in numerical model predictions for typhoons. The authors’ procedure of an end-to-end typhoon prediction using an AMSU-based initial condition is similar to the framework developed by Zhu et al. in 2002 but differs from it by considering a downward integration approach in part of the retrieval process and with the starting point of the integration chosen as a constant 50-hPa field without any structure. The typhoon circulation from this retrieval is thus determined objectively from the AMSU observation alone, without a preimposed typhoon vortex structure, allowing an asymmetric structure even at the inner core of a typhoon. The results show that this procedure is capable of retrieving a reasonable typhoon circulation from the AMSU data. The impact of the AMSU data on the assimilated initial condition for prediction is shown to be especially notable in its modification of the upper-level circulation of the typhoons. With the downward integration, the error accumulates downward such that the current approach provides a relatively more accurate estimate of the upper-level circulation, important for the steering of a typhoon. Consistent with this, it is demonstrated that the inclusion of the AMSU data helps to improve the forecast of typhoon tracks for selected cases of typhoons. This approach is less satisfying in producing an accurate retrieval and prediction of the intensity of typhoons. The reasons for this shortcoming and possible future remedies are discussed.

Full access
Jun Ying
,
Tao Lian
,
Ping Huang
,
Gang Huang
,
Dake Chen
, and
Shangfeng Chen

Abstract

The surface heat flux anomalies during El Niño events have always been treated as an atmospheric response to sea surface temperature anomalies (SSTAs). However, whether they play roles in the formation of SSTAs remains unclear. In this study, we find that the surface net heat flux anomalies in different El Niño types have different effects on the development of the spatial pattern of SSTAs. By applying the fuzzy clustering method, El Niño events during 1982–2018 are classified into two types: 1) extreme El Niños with strong positive SSTAs, with the largest SSTAs in the eastern equatorial Pacific, and 2) moderate El Niños with moderate positive SSTAs, with the largest SSTAs in the central equatorial Pacific. The surface net heat flux anomalies in extreme El Niños generally display a “larger warming gets more damping” zonal paradigm, and essentially do not impact the formation of the spatial pattern of SSTAs. Those in moderate El Niños, however, can impact the formation of the spatial pattern of SSTAs by producing more damping effects in the eastern than in the central equatorial Pacific, thus favoring the largest SSTAs being confined to the central equatorial Pacific. More damping effects of net heat flux anomalies in the eastern equatorial Pacific in moderate El Niños are contributed by the surface latent heat flux anomalies, which are mainly regulated by the negative relative humidity–SST feedback and the positive wind–evaporation–SST feedback. Therefore, we highlight that these two atmospheric adjustments should be considered during the development of moderate El Niños in order to obtain a comprehensive understanding of the formation of El Niño diversity.

Free access
Wenping Jiang
,
Gang Huang
,
Ping Huang
,
Renguang Wu
,
Kaiming Hu
, and
Wei Chen

Abstract

This study investigates the characteristics and maintaining mechanisms of the anomalous northwest Pacific anticyclone (NWPAC) following different El Niño decaying paces. In fast decaying El Niño summers, the positive SST anomalies in the tropical central-eastern Pacific (TCEP) have transformed to negative, and positive SST anomalies appear around the Maritime Continent (MC), whereas in slow decaying El Niño summers, positive SST anomalies are present in the TCEP and in the tropical Indian Ocean (TIO). During fast decaying El Niño summers, the cold Rossby wave in response to the negative TCEP SST anomalies has a primary contribution to maintaining the NWPAC anomalies. The warm Kelvin wave response and enhanced Hadley circulation anomalies forced by the positive MC SST anomalies also facilitate developing the NWPAC anomalies. During slow decaying El Niño summers, the warm Kelvin wave anchored over the TIO plays a crucial role in sustaining the NWPAC anomalies, while the warm Rossby wave triggered by the positive TCEP SST anomalies weakens the western part of the NWPAC anomalies. The southwesterly anomalies of the NWPAC anomalies during fast decaying El Niño summers can reach to higher latitudes than those during slow decaying El Niño summers. Correspondingly, positive rainfall anomalies appear in northern China and the Yangtze River basin in fast decaying El Niño summers but are only distributed in the Yangtze River basin in slow decaying El Niño summers. This study implies that the El Niño decaying pace is a key factor in East Asian summer climate.

Full access
Yan Du
,
Shang-Ping Xie
,
Ya-Li Yang
,
Xiao-Tong Zheng
,
Lin Liu
, and
Gang Huang

Abstract

This study evaluates the simulation of the Indian Ocean Basin (IOB) mode and relevant physical processes in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical runs from 20 CMIP5 models are available for the analysis. They reproduce the IOB mode and its close relationship to El Niño–Southern Oscillation (ENSO). Half of the models capture key IOB processes: a downwelling oceanic Rossby wave in the southern tropical Indian Ocean (TIO) precedes the IOB development in boreal fall and triggers an antisymmetric wind anomaly pattern across the equator in the following spring. The anomalous wind pattern induces a second warming in the north Indian Ocean (NIO) through summer and sustains anticyclonic wind anomalies in the northwest Pacific by radiating a warm tropospheric Kelvin wave. The second warming in the NIO is indicative of ocean–atmosphere interaction in the interior TIO. More than half of the models display a double peak in NIO warming, as observed following El Niño, while the rest show only one winter peak. The intermodel diversity in the characteristics of the IOB mode seems related to the thermocline adjustment in the south TIO to ENSO-induced wind variations. Almost all the models show multidecadal variations in IOB variance, possibly modulated by ENSO.

Full access
Xiao-Tong Zheng
,
Shang-Ping Xie
,
Yan Du
,
Lin Liu
,
Gang Huang
, and
Qinyu Liu

Abstract

The response of the Indian Ocean dipole (IOD) mode to global warming is investigated based on simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to increased greenhouse gases, an IOD-like warming pattern appears in the equatorial Indian Ocean, with reduced (enhanced) warming in the east (west), an easterly wind trend, and thermocline shoaling in the east. Despite a shoaling thermocline and strengthened thermocline feedback in the eastern equatorial Indian Ocean, the interannual variance of the IOD mode remains largely unchanged in sea surface temperature (SST) as atmospheric feedback and zonal wind variance weaken under global warming. The negative skewness in eastern Indian Ocean SST is reduced as a result of the shoaling thermocline. The change in interannual IOD variance exhibits some variability among models, and this intermodel variability is correlated with the change in thermocline feedback. The results herein illustrate that mean state changes modulate interannual modes, and suggest that recent changes in the IOD mode are likely due to natural variations.

Full access
Shang-Ping Xie
,
Kaiming Hu
,
Jan Hafner
,
Hiroki Tokinaga
,
Yan Du
,
Gang Huang
, and
Takeaki Sampe

Abstract

Significant climate anomalies persist through the summer (June–August) after El Niño dissipates in spring over the equatorial Pacific. They include the tropical Indian Ocean (TIO) sea surface temperature (SST) warming, increased tropical tropospheric temperature, an anomalous anticyclone over the subtropical northwest Pacific, and increased mei-yu–baiu rainfall over East Asia. The cause of these lingering El Niño effects during summer is investigated using observations and an atmospheric general circulation model (GCM). The results herein indicate that the TIO warming acts like a capacitor anchoring atmospheric anomalies over the Indo–western Pacific Oceans. It causes tropospheric temperature to increase by a moist-adiabatic adjustment in deep convection, emanating a baroclinic Kelvin wave into the Pacific. In the northwest Pacific, this equatorial Kelvin wave induces northeasterly surface wind anomalies, and the resultant divergence in the subtropics triggers suppressed convection and the anomalous anticyclone. The GCM results support this Kelvin wave–induced Ekman divergence mechanism. In response to a prescribed SST increase over the TIO, the model simulates the Kelvin wave with low pressure on the equator as well as suppressed convection and the anomalous anticyclone over the subtropical northwest Pacific. An additional experiment further indicates that the north Indian Ocean warming is most important for the Kelvin wave and northwest Pacific anticyclone, a result corroborated by observations.

These results have important implications for the predictability of Indo–western Pacific summer climate: the spatial distribution and magnitude of the TIO warming, rather than simply whether there is an El Niño in the preceding winter, affect summer climate anomalies over the Indo–western Pacific and East Asia.

Full access
Xianglei Huang
,
Xiuhong Chen
,
Mark Flanner
,
Ping Yang
,
Daniel Feldman
, and
Chaincy Kuo

Abstract

Surface longwave emissivity can be less than unity and vary significantly with frequency. However, most climate models still assume a blackbody surface in the longwave (LW) radiation scheme of their atmosphere models. This study incorporates realistic surface spectral emissivity into the atmospheric component of the Community Earth System Model (CESM), version 1.1.1, and evaluates its impact on simulated climate. By ensuring consistency of the broadband surface longwave flux across different components of the CESM, the top-of-the-atmosphere (TOA) energy balance in the modified model can be attained without retuning the model. Inclusion of surface spectral emissivity, however, leads to a decrease of net upward longwave flux at the surface and a comparable increase of latent heat flux. Global-mean surface temperature difference between the modified and standard CESM simulation is 0.20 K for the fully coupled run and 0.45 K for the slab-ocean run. Noticeable surface temperature differences between the modified and standard CESM simulations are seen over the Sahara Desert and polar regions. Accordingly, the climatological mean sea ice fraction in the modified CESM simulation can be less than that in the standard CESM simulation by as much as 0.1 in some regions. When spectral emissivities of sea ice and open ocean surfaces are considered, the broadband LW sea ice emissivity feedback is estimated to be −0.003 W m−2 K−1, assuming flat ice emissivity as sea ice emissivity, and 0.002 W m−2 K−1, assuming coarse snow emissivity as sea ice emissivity, which are two orders of magnitude smaller than the surface albedo feedback.

Full access
Qihua Peng
,
Shang-Ping Xie
,
Rui Xin Huang
,
Weiqiang Wang
,
Tingting Zu
, and
Dongxiao Wang

Abstract

The Indonesian Throughflow (ITF) is projected to slow down under anthropogenic warming. Several mechanisms—some mutually conflicting—have been proposed but the detailed processes causing this slowdown remain unclear. By turning on/off buoyancy and wind forcings globally and in key regions, this study investigates the dynamical adjustments underlying the centennial ITF slowdown in the global oceans and climate models. Our results show that the projected weakened ITF transport in the top 1500 m is dominated by remote anomalous buoyancy forcing in the North Atlantic Ocean. Specifically, surface freshening and warming over the North Atlantic Ocean slow the Atlantic meridional overturning circulation (AMOC), and the resultant dynamic signals propagate through the coastal-equatorial waveguide into the southeastern Indian Ocean and western Pacific Ocean, causing the reduction of ITF transport over a deep layer. In contrast, the anomalous surface buoyancy flux in the Indo-Pacific affects the ocean temperature and salinity in a shallow upper layer, resulting in ITF changes in forms of high baroclinic mode structure with negligible impacts on the net ITF transport. A vertical partitioning index is proposed to distinguish the remote forcing via the AMOC and regional forcing in the Indo-Pacific Ocean, which could be useful for monitoring, attributing, and predicting the changing ITF transport under global warming.

Restricted access