Search Results

You are looking at 41 - 47 of 47 items for

  • Author or Editor: R. M. Johnson x
  • Refine by Access: All Content x
Clear All Modify Search
C. L. Reddington, K. S. Carslaw, P. Stier, N. Schutgens, H. Coe, D. Liu, J. Allan, J. Browse, K. J. Pringle, L. A. Lee, M. Yoshioka, J. S. Johnson, L. A. Regayre, D. V. Spracklen, G. W. Mann, A. Clarke, M. Hermann, S. Henning, H. Wex, T. B. Kristensen, W. R. Leaitch, U. Pöschl, D. Rose, M. O. Andreae, J. Schmale, Y. Kondo, N. Oshima, J. P. Schwarz, A. Nenes, B. Anderson, G. C. Roberts, J. R. Snider, C. Leck, P. K. Quinn, X. Chi, A. Ding, J. L. Jimenez, and Q. Zhang

Abstract

The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.

Open access
Bruce A. Wielicki, D. F. Young, M. G. Mlynczak, K. J. Thome, S. Leroy, J. Corliss, J. G. Anderson, C. O. Ao, R. Bantges, F. Best, K. Bowman, H. Brindley, J. J. Butler, W. Collins, J. A. Dykema, D. R. Doelling, D. R. Feldman, N. Fox, X. Huang, R. Holz, Y. Huang, Z. Jin, D. Jennings, D. G. Johnson, K. Jucks, S. Kato, D. B. Kirk-Davidoff, R. Knuteson, G. Kopp, D. P. Kratz, X. Liu, C. Lukashin, A. J. Mannucci, N. Phojanamongkolkij, P. Pilewskie, V. Ramaswamy, H. Revercomb, J. Rice, Y. Roberts, C. M. Roithmayr, F. Rose, S. Sandford, E. L. Shirley, Sr. W. L. Smith, B. Soden, P. W. Speth, W. Sun, P. C. Taylor, D. Tobin, and X. Xiong

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a “NIST [National Institute of Standards and Technology] in orbit.” CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

Full access
Sharon Stammerjohn, Ted A. Scambos, Susheel Adusumilli, Sandra Barreira, Germar H. Bernhard, Deniz Bozkurt, Seth M. Bushinsky, Kyle R. Clem, Steve Colwell, Lawrence Coy, Jos De Laat, Marcel D. du Plessis, Ryan L. Fogt, Annie Foppert, Helen Amanda Fricker, Alex S. Gardner, Sarah T. Gille, Tessa Gorte, Bryan Johnson, Eric Keenan, Daemon Kennett, Linda M. Keller, Natalya A. Kramarova, Kaisa Lakkala, Matthew A. Lazzara, Jan T. M. Lenaerts, Jan L. Lieser, Zhi Li, Hongxing Liu, Craig S. Long, Michael MacFerrin, Michelle L. Maclennan, Robert A. Massom, David Mikolajczyk, Lynn Montgomery, Thomas L. Mote, Eric R. Nash, Paul A. Newman, Irina Petropavlovskikh, Michael Pitts, Phillip Reid, Steven R. Rintoul, Michelle L. Santee, Elizabeth H. Shadwick, Alessandro Silvano, Scott Stierle, Susan Strahan, Adrienne J. Sutton, Sebastiaan Swart, Veronica Tamsitt, Bronte Tilbrook, Lei Wang, Nancy L. Williams, and Xiaojun Yuan
Full access
E. Povl Abrahamsen, Sandra Barreira, Cecilia M. Bitz, Amy Butler, Kyle R. Clem, Steve Colwell, Lawrence Coy, Jos de Laat, Marcel D. du Plessis, Ryan L. Fogt, Helen Amanda Fricker, John Fyfe, Alex S. Gardner, Sarah T. Gille, Tessa Gorte, L. Gregor, Will Hobbs, Bryan Johnson, Eric Keenan, Linda M. Keller, Natalya A. Kramarova, Matthew A. Lazzara, Jan T. M. Lenaerts, Jan L. Lieser, Hongxing Liu, Craig S. Long, Michelle Maclennan, Robert A. Massom, François Massonnet, Matthew R. Mazloff, David Mikolajczyk, A. Narayanan, Eric R. Nash, Paul A. Newman, Irina Petropavlovskikh, Michael Pitts, Bastien Y. Queste, Phillip Reid, F. Roquet, Michelle L. Santee, Susan Strahan, Sebastiann Swart, and Lei Wang
Free access
M. Susan Lozier, Sheldon Bacon, Amy S. Bower, Stuart A. Cunningham, M. Femke de Jong, Laura de Steur, Brad deYoung, Jürgen Fischer, Stefan F. Gary, Blair J. W. Greenan, Patrick Heimbach, Naomi P. Holliday, Loïc Houpert, Mark E. Inall, William E. Johns, Helen L. Johnson, Johannes Karstensen, Feili Li, Xiaopei Lin, Neill Mackay, David P. Marshall, Herlé Mercier, Paul G. Myers, Robert S. Pickart, Helen R. Pillar, Fiammetta Straneo, Virginie Thierry, Robert A. Weller, Richard G. Williams, Chris Wilson, Jiayan Yang, Jian Zhao, and Jan D. Zika

Abstract

For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.

Full access
Molly Baringer, Mariana B. Bif, Tim Boyer, Seth M. Bushinsky, Brendan R. Carter, Ivona Cetinić, Don P. Chambers, Lijing Cheng, Sanai Chiba, Minhan Dai, Catia M. Domingues, Shenfu Dong, Andrea J. Fassbender, Richard A. Feely, Eleanor Frajka-Williams, Bryan A. Franz, John Gilson, Gustavo Goni, Benjamin D. Hamlington, Zeng-Zhen Hu, Boyin Huang, Masayoshi Ishii, Svetlana Jevrejeva, William E. Johns, Gregory C. Johnson, Kenneth S. Johnson, John Kennedy, Marion Kersalé, Rachel E. Killick, Peter Landschützer, Matthias Lankhorst, Tong Lee, Eric Leuliette, Feili Li, Eric Lindstrom, Ricardo Locarnini, Susan Lozier, John M. Lyman, John J. Marra, Christopher S. Meinen, Mark A. Merrifield, Gary T. Mitchum, Ben Moat, Didier Monselesan, R. Steven Nerem, Renellys C. Perez, Sarah G. Purkey, Darren Rayner, James Reagan, Nicholas Rome, Alejandra Sanchez-Franks, Claudia Schmid, Joel P. Scott, Uwe Send, David A. Siegel, David A. Smeed, Sabrina Speich, Paul W. Stackhouse Jr., William Sweet, Yuichiro Takeshita, Philip R. Thompson, Joaquin A. Triñanes, Martin Visbeck, Denis L. Volkov, Rik Wanninkhof, Robert A. Weller, Toby K. Westberry, Matthew J. Widlansky, Susan E. Wijffels, Anne C. Wilber, Lisan Yu, Weidong Yu, and Huai-Min Zhang
Free access
Gregory C. Johnson, Rick Lumpkin, Simone R. Alin, Dillon J. Amaya, Molly O. Baringer, Tim Boyer, Peter Brandt, Brendan R. Carter, Ivona Cetinić, Don P. Chambers, Lijing Cheng, Andrew U. Collins, Cathy Cosca, Ricardo Domingues, Shenfu Dong, Richard A. Feely, Eleanor Frajka-Williams, Bryan A. Franz, John Gilson, Gustavo Goni, Benjamin D. Hamlington, Josefine Herrford, Zeng-Zhen Hu, Boyin Huang, Masayoshi Ishii, Svetlana Jevrejeva, John J. Kennedy, Marion Kersalé, Rachel E. Killick, Peter Landschützer, Matthias Lankhorst, Eric Leuliette, Ricardo Locarnini, John M. Lyman, John J. Marra, Christopher S. Meinen, Mark A. Merrifield, Gary T. Mitchum, Ben I. Moat, R. Steven Nerem, Renellys C. Perez, Sarah G. Purkey, James Reagan, Alejandra Sanchez-Franks, Hillary A. Scannell, Claudia Schmid, Joel P. Scott, David A. Siegel, David A. Smeed, Paul W. Stackhouse, William Sweet, Philip R. Thompson, Joaquin A. Triñanes, Denis L. Volkov, Rik Wanninkhof, Robert A. Weller, Caihong Wen, Toby K. Westberry, Matthew J. Widlansky, Anne C. Wilber, Lisan Yu, and Huai-Min Zhang
Full access