Search Results

You are looking at 41 - 50 of 80 items for

  • Author or Editor: S. Chang x
  • Refine by Access: All Content x
Clear All Modify Search
J. C. Hubbert
,
S. M. Ellis
,
W.-Y. Chang
, and
Y.-C. Liou

Abstract

In this paper, experimental X-band polarimetric radar data from simultaneous transmission of horizontal (H) and vertical (V) polarizations (SHV) are shown, modeled, and microphysically interpreted. Both range–height indicator data and vertical-pointing X-band data from the Taiwan Experimental Atmospheric Mobile-Radar (TEAM-R) are presented. Some of the given X-band data are biased, which is very likely caused by cross coupling of the H and V transmitted waves as a result of aligned, canted ice crystals. Modeled SHV data are used to explain the observed polarimetric signatures. Coincident data from the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) are presented to augment and support the X-band polarimetric observations and interpretations. The polarimetric S-Pol data are obtained via fast-alternating transmission of horizontal and vertical polarizations (FHV), and thus the S-band data are not contaminated by the cross coupling (except the linear depolarization ratio LDR) observed in the X-band data. The radar data reveal that there are regions in the ice phase where electric fields are apparently aligning ice crystals near vertically and thus causing negative specific differential phase K dp. The vertical-pointing data also indicate the presence of preferentially aligned ice crystals that cause differential reflectivity Z dr and differential phase ϕ dp to be strong functions of azimuth angle.

Full access
Michael S. Frankel
,
Norman J. F. Chang
, and
Melvin J. Sanders Jr.

The Radio Acoustic Sounding System (RASS) is used to remotely measure atmospheric temperature profiles. The technique used for these measurements is Doppler tracking of a short, high-intensity acoustic pulse with an RF (electromagnetic) radar. By measurement of the acoustic pulse propagation speed, temperature can be calculated as a function of altitude.

The Stanford University RASS operates at an acoustic frequency of 85 Hz. Because of this low frequency and the necessity of high system gain, the unit is too large for mobile applications. Our theoretical analyses show, however, that the RASS could operate at much higher acoustic frequencies and still provide data to altitudes of ~1 km even during periods of moderate to strong atmospheric turbulence. These theoretical analyses have now been supported experimentally. A RASS operating with an acoustic frequency of 1 kHz not only provided Doppler data to altitudes of 1 km, but it also was able to provide a measure of horizontal winds over the same range.

These experimental results came from a brief effort to support our theoretical studies. Future experiments could well extend the profiling range and versatility of the high-frequency RASS. Ultimately, we hope that our work will lead to a transportable system to be used for collecting real-time data on atmospheric winds and temperatures.

Full access
Bao-Fong Jeng
,
Hway-Jen Chen
,
Shwu-Ching Lin
,
Tzay-Ming Leou
,
Melinda S. Peng
,
Simon W. Chang
,
Wu-Ron Hsu
, and
C.-P. Chang

Abstract

The Central Weather Bureau (CWB) in Taipei, Republic of China has entered the era of operational numerical weather prediction with the complete online operations of a Global Forecast System (GFS) and the Limited-Area Forecast Systems (LAFS). A brief description of the Regional Forecast System (RFS) and the Mesoscale Forecast System (MFS) of the LAFS are presented in this paper. The RFS has a horizontal resolution of 90 km, depends on the GFS for boundary values, and produces forecast up to 48 h over the eastern parts of Asia and the northwestern Pacific Ocean. The MFS has a resolution of 45 km, uses RFS analysis and forecast as initial and boundary conditions, and produces 24-h forecasts for Taiwan and its immediate vicinity. Model configurations, numerics, physical parameterizations, performance statistics, and two significant weather cases of the two forecast systems are discussed. Future improvements and new plans will also be given.

Full access
L.-Y. Oey
,
Y.-L. Chang
,
Y.-C. Lin
,
M.-C. Chang
,
S. Varlamov
, and
Y. Miyazawa

Abstract

In winter, a branch of the China Coastal Current can turn in the Taiwan Strait to join the poleward-flowing Taiwan Coastal Current. The associated cross-strait flows have been inferred from hydrographic and satellite data, from observed abundances off northwestern Taiwan of cold-water copepod species Calanus sinicus and, in late March of 2012, also from debris found along the northwestern shore of Taiwan of a ship that broke two weeks earlier off the coast of China. The dynamics related to such cross flows have not been previously explained and are the focus of this study using analytical and numerical models. It is shown that the strait’s currents can be classified into three regimes depending on the strength of the winter monsoon: equatorward (poleward) for northeasterly winds stronger (weaker) than an upper (lower) bound and cross-strait flows for relaxing northeasterly winds between the two bounds. These regimes are related to the formation of the stationary Rossby wave over the Changyun Ridge off midwestern Taiwan. In the weak (strong) northeasterly wind regime, a weak (no) wave is produced. In the relaxing wind regime, cross-strait currents are triggered by an imbalance between the pressure gradient and wind and are amplified by the finite-amplitude meander downstream of the ridge where a strong cyclone develops.

Full access
P. M. Lyster
,
S. E. Cohn
,
R. Ménard
,
L-P. Chang
,
S-J. Lin
, and
R. G. Olsen

Abstract

A Kalman filter for the assimilation of long-lived atmospheric chemical constituents was developed for two-dimensional transport models on isentropic surfaces over the globe. Since the Kalman filter calculates the error covariances of the estimated constituent field, there are five dimensions to this problem, x 1, x 2, and time, where x 1 and x 2 are the positions of two points on an isentropic surface. Only computers with large memory capacity and high floating point speed can handle problems of this magnitude.

This article describes an implementation of the Kalman filter for distributed-memory, message-passing parallel computers. To evolve the forecast error covariance matrix, an operator decomposition and a covariance decomposition were studied. The latter was found to be scalable and has the general property, of considerable practical advantage, that the dynamical model does not need to be parallelized. Tests of the Kalman filter code examined variance transport and observability properties. This code is being used currently to assimilate constituent data retrieved by limb sounders on the Upper Atmosphere Research Satellite.

Full access
T. T. Wilheit
,
A. T. C. Chang
,
M. S. V. Rao
,
E. B. Rodgers
, and
J. S. Theon

Abstract

A theoretical model for calculating microwave radiative transfer in raining atmospheres is developed. These calculations are compared with microwave brightness temperatures at a wavelength of 1.55 cm measured by the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite and rain rates derived from WSR-57 meteorological radar measurements. A specially designed ground-based verification experiment was also performed, wherein upward viewing microwave brightness temperature measurements at wavelengths of 1.55 and 0.81 cm were compared with directly measured rain rates. It is shown that over ocean areas, brightness temperature measurements from ESMR may be interpreted in terms of rain rate with about an accuracy of a factor of 2 over the range 1–25 mm h−1 rain rate.

Full access
T. T. Wilheit
,
A. T. C. Chang
,
J. L. King
,
E. B. Rodgers
,
R. A. Nieman
,
B. M. Krupp
,
A. S. Milman
,
J. S. Stratigos
, and
H. Siddalingaiah

Abstract

Observations of rain cells in the remains of a decaying tropical storm were made by Airborne Microwave Radiometers at 19.35 and 92 GHz and three frequencies near 183 GHz. Extremely low brightness temperatures, as low as 140 K, were noted in the 92 and 183 GHz observations. These can be accounted for by the ice often associated with raindrop formation. Further, the 183 GHz observations can be interpreted in terms of the height of the ice. The brightness temperatures observed suggest the presence of precipitationsized ice as high as 9 km or more.

Full access
A. C. Haza
,
E. D’Asaro
,
H. Chang
,
S. Chen
,
M. Curcic
,
C. Guigand
,
H. S. Huntley
,
G. Jacobs
,
G. Novelli
,
T. M. Özgökmen
,
A. C. Poje
,
E. Ryan
, and
A. Shcherbina

Abstract

The Lagrangian Submesoscale Experiment (LASER) was designed to study surface flows during winter conditions in the northern Gulf of Mexico. More than 1000 mostly biodegradable drifters were launched. The drifters consisted of a surface floater extending 5 cm below the surface, containing the satellite tracking system, and a drogue extending 60 cm below the surface, hanging beneath the floater on a flexible tether. On some floats, the drogue separated from the floater during storms. This paper describes methods to detect drogue loss based on two properties that distinguish drogued from undrogued drifters. First, undrogued drifters often flip over, pointing their satellite antenna downward and thus intermittently reducing the frequency of GPS fixes. Second, undrogued drifters respond to wind forcing more than drogued drifters. A multistage analysis is used: first, two properties are used to create a preliminary drifter classification; then, the motion of each unclassified drifter is compared to that of its classified neighbors in an iterative process for nearly all of the drifters. The algorithm classified drifters with a known drogue status with an accuracy of virtually 100%. Drogue loss times were estimated with a precision of less than 0.5 and 3 h for 60% and 85% of the drifters, respectively. An estimated 40% of the drifters lost their drogues in the first 7 weeks, with drogue loss coinciding with storm events, particularly those with steep waves. Once the drogued and undrogued drifters are classified, they can be used to quantify the differences in material dispersion at different depths.

Full access
J. A. Coakley Jr.
,
P. A. Durkee
,
K. Nielsen
,
J. P. Taylor
,
S. Platnick
,
B. A. Albrecht
,
D. Babb
,
F.-L. Chang
,
W. R. Tahnk
,
C. S. Bretherton
, and
P. V. Hobbs

Abstract

The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12, and afternoon, NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not constrain the appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why the majority of ship tracks observed from satellites off the coast of California are found south of 35°N. A small rise in the height of low-level clouds appears to explain why numerous ship tracks appeared on one day in a particular region but disappeared on the next, even though the altitudes of the low-level clouds were generally less than 1 km and the cloud cover was the same for both days. In addition, ship tracks are frequent when low-level clouds at altitudes below 1 km are extensive and completely cover large areas. The frequency of imagery pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and explains why more ship tracks are observed in the morning than in the afternoon. If the occurrence of ship tracks in satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud-top altitude and the area of complete cloud cover by low-level clouds may be useful indices for this coupling.

Full access
Rym Msadek
,
T. L. Delworth
,
A. Rosati
,
W. Anderson
,
G. Vecchi
,
Y.-S. Chang
,
K. Dixon
,
R. G. Gudgel
,
W. Stern
,
A. Wittenberg
,
X. Yang
,
F. Zeng
,
R. Zhang
, and
S. Zhang

Abstract

Decadal prediction experiments were conducted as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5) using the GFDL Climate Model, version 2.1 (CM2.1) forecast system. The abrupt warming of the North Atlantic Subpolar Gyre (SPG) that was observed in the mid-1990s is considered as a case study to evaluate forecast capabilities and better understand the reasons for the observed changes. Initializing the CM2.1 coupled system produces high skill in retrospectively predicting the mid-1990s shift, which is not captured by the uninitialized forecasts. All the hindcasts initialized in the early 1990s show a warming of the SPG; however, only the ensemble-mean hindcasts initialized in 1995 and 1996 are able to reproduce the observed abrupt warming and the associated decrease and contraction of the SPG. Examination of the physical mechanisms responsible for the successful retrospective predictions indicates that initializing the ocean is key to predicting the mid-1990s warming. The successful initialized forecasts show an increased Atlantic meridional overturning circulation and North Atlantic Current transport, which drive an increased advection of warm saline subtropical waters northward, leading to a westward shift of the subpolar front and, subsequently, a warming and spindown of the SPG. Significant seasonal climate impacts are predicted as the SPG warms, including a reduced sea ice concentration over the Arctic, an enhanced warming over the central United States during summer and fall, and a northward shift of the mean ITCZ. These climate anomalies are similar to those observed during a warm phase of the Atlantic multidecadal oscillation, which is encouraging for future predictions of North Atlantic climate.

Full access