Search Results

You are looking at 41 - 50 of 117 items for

  • Author or Editor: Wei Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Wei-Yu Chang, Tai-Chi Chen Wang, and Pay-Liam Lin

Abstract

The drop size distribution (DSD) and drop shape relation (DSR) characteristics that were observed by a ground-based 2D video disdrometer and retrieved from a C-band polarimetric radar in the typhoon systems during landfall in the western Pacific, near northern Taiwan, were analyzed. The evolution of the DSD and its relation with the vertical development of the reflectivity of two rainband cases are fully illustrated. Three different types of precipitation systems were classified—weak stratiform, stratiform, and convective—according to characteristics of the mass-weighted diameter Dm, the maximum diameter, and the vertical structure of reflectivity. Further study of the relationship between the height H of the 15-dBZ contour of the vertical reflectivity profile, surface reflectivity Z, and the mass-weighted diameter Dm showed that Dm increased with a corresponding increase in the system depth H and reflectivity Z.

An analysis of DSDs retrieved from the National Central University (NCU) C-band polarimetric radar and disdrometer in typhoon cases indicates that the DSDs from the typhoon systems on the ocean were mainly a maritime convective type. However, the DSDs collected over land tended to uniquely locate in between the continental and maritime clusters. The average mass-weighted diameter Dm was about 2 mm and the average logarithmic normalized intercept Nw was about 3.8 log10 mm−1 m−3 in typhoon cases. The unique terrain-influenced deep convective systems embedded in typhoons in northern Taiwan might be the reason for these characteristics.

The “effective DSR” of typhoon systems had an axis ratio similar to that found by E. A. Brandes et al. when the raindrops were less than 1.5 mm. Nevertheless, the axis ratio tended to be more spherical with drops greater than 1.5 mm and under higher horizontal winds (maximum wind speed less than 8 m s−1). A fourth-order fitting DSR was derived for typhoon systems and the value was also very close to the estimated DSR from the polarimetric measurements in Typhoon Saomai (2006).

Full access
Yaru Guo, Yuanlong Li, Fan Wang, Yuntao Wei, and Zengrui Rong

Abstract

A high-resolution (3–8 km) regional oceanic general circulation model is utilized to understand the sea surface temperature (SST) variability of Ningaloo Niño in the southeast Indian Ocean (SEIO). The model reproduces eight Ningaloo Niño events with good fidelity and reveals complicated spatial structures. Mesoscale noises are seen in the warming signature and confirmed by satellite microwave SST data. Model experiments are carried out to quantitatively evaluate the effects of key processes. The results reveal that the surface turbulent heat flux (primarily latent heat flux) is the most important process (contribution > 68%) in driving and damping the SST warming for most events, while the roles of the Indonesian Throughflow (~15%) and local wind forcing are secondary. A suitable air temperature warming is essential to reproducing the reduced surface latent heat loss during the growth of SST warming (~66%), whereas the effect of the increased air humidity is negligibly small (1%). The established SST warming in the mature phase causes increased latent heat loss that initiates the decay of warming. A 20-member ensemble simulation is performed for the 2010/11 super Ningaloo Niño, which confirms the strong influence of ocean internal processes in the redistribution of SST warming signatures. Oceanic eddies can dramatically modulate the magnitudes of local SST warming, particularly in offshore areas where the “signal-to-noise” ratio is low, raising a caution for evaluating the predictability of Ningaloo Niño and its environmental consequences.

Free access
Xin-Zhong Liang, Arthur N. Samel, and Wei-Chyung Wang

Abstract

China's rainfall interannual predictability is generally believed to depend upon the accurate representation of its annual cycle as well as teleconnections with planetary surface anomalies, including tropical east Pacific sea surface temperature and Eurasian snow and soil moisture. A suite of general circulation model (GCM) simulations is used to ascertain the existence of these relationships. First, a comparison of thirty 1980–88 Atmospheric Model Intercomparison Project (AMIP) GCM simulations shows no clear correspondence between model skill to reproduce observed rainfall annual cycle and interannual variability. Thus, accurate representation of either component does not ensure the realistic simulation of the other. Second, diagnosis of the 1903–94 and 1950–97 National Center for Atmospheric Research (NCAR) Community Climate Model, version 3 (CCM3), ensemble integrations indicates the existence of teleconnections in which spring planetary surface anomalies lead China's summer rainfall variations. These teleconnections, however, are sensitive to initial conditions, which define distinct dynamic regimes during the integration period. In addition, analysis of the NCAR Climate System Model (CSM) 300-yr equilibrium simulation reveals that the teleconnections display decadal variations. These results cast doubt on the traditional physical mechanisms that explain China's rainfall teleconnections and, hence, emphasize the need to incorporate interactions between planetary surface anomalies and specific dynamic regimes.

Full access
Zhou Shenghui, Wei Ming, Wang Lijun, Zhao Chang, and Zhang Mingxu

Abstract

The sensitivity of the ill-conditioned coefficient matrix (CM) and the size of the analysis volume on the retrieval accuracy in the volume velocity processing (VVP) method are analyzed. By estimating the upper limit of the retrieval error and analyzing the effects of neglected parameters on retrieval accuracy, the simplified wind model is found to decrease the difficulty in solving and stabilizing the retrieval results, even though model errors would be induced by neglecting partial parameters. Strong linear correlation among CM vectors would cause an ill-conditioned matrix when more parameters are selected. By using exact coordinate data and changing the size of the analysis volume, the variation of the condition number indicates that a large volume size decreases the condition number, and the decrease caused by increasing the number of volume gates is larger than that caused by increasing the sector width. Using the spread of errors in the solution, a demonstration using mathematical deduction is provided to explain how a large analysis volume can improve retrieval accuracy. A test with a uniform wind field is used to demonstrate these conclusions.

Full access
Youbing Peng, Caiming Shen, Wei-Chyung Wang, and Ying Xu

Abstract

Studies of the effects of large volcanic eruptions on regional climate so far have focused mostly on temperature responses. Previous studies using proxy data suggested that coherent droughts over eastern China are associated with explosive low-latitude volcanic eruptions. Here, the authors present an investigation of the responses of summer precipitation over eastern China to large volcanic eruptions through analyzing a 1000-yr global climate model simulation driven by natural and anthropogenic forcing. Superposed epoch analyses of 18 cases of large volcanic eruption indicate that summer precipitation over eastern China significantly decreases in the eruption year and the year after. Model simulation suggests that this reduction of summer precipitation over eastern China can be attributed to a weakening of summer monsoon and a decrease of moisture vapor over tropical oceans caused by large volcanic eruptions.

Full access
Changlin Chen, Guihua Wang, Shang-Ping Xie, and Wei Liu

ABSTRACT

The Kuroshio and Gulf Stream, the subtropical western boundary currents of the North Pacific and North Atlantic, play important roles in meridional heat transport and ocean–atmosphere interaction processes. Using a multimodel ensemble of future projections, we show that a warmer climate intensifies the upper-layer Kuroshio, in contrast to the previously documented slowdown of the Gulf Stream. Our ocean general circulation model experiments show that the sea surface warming, not the wind change, is the dominant forcing that causes the upper-layer Kuroshio to intensify in a warming climate. Forced by the sea surface warming, ocean subduction and advection processes result in a stronger warming to the east of the Kuroshio than to the west, which increases the isopycnal slope across the Kuroshio, and hence intensifies the Kuroshio. In the North Atlantic, the Gulf Stream slows down as part of the Atlantic meridional overturning circulation (AMOC) response to surface salinity decrease in the high latitudes under global warming. The distinct responses of the Gulf Stream and Kuroshio to climate warming are accompanied by different regional patterns of sea level rise. While the sea level rise accelerates along the northeastern U.S. coast as the AMOC weakens, it remains close to the global mean rate along the East Asian coast as the intensifying Kuroshio is associated with the enhanced sea level rise offshore in the North Pacific subtropical gyre.

Full access
Wei Mei, Shang-Ping Xie, Ming Zhao, and Yuqing Wang

Abstract

Forced interannual-to-decadal variability of annual tropical cyclone (TC) track density in the western North Pacific between 1979 and 2008 is studied using TC tracks from observations and simulations by a 25-km-resolution version of the GFDL High-Resolution Atmospheric Model (HiRAM) that is forced by observed sea surface temperatures (SSTs). Two modes dominate the decadal variability: a nearly basinwide mode, and a dipole mode between the subtropics and lower latitudes. The former mode links to variations in TC number and is forced by SST variations over the off-equatorial tropical central North Pacific, whereas the latter might be associated with the Atlantic multidecadal oscillation. The interannual variability is also controlled by two modes: a basinwide mode driven by SST anomalies of opposite signs located in the tropical central Pacific and eastern Indian Ocean, and a southeast–northwest dipole mode connected to the conventional eastern Pacific ENSO. The seasonal evolution of the ENSO effect on TC activity is further explored via a joint empirical orthogonal function analysis using TC track density of consecutive seasons, and the analysis reveals that two types of ENSO are at work. Internal variability in TC track density is then examined using ensemble simulations from both HiRAM and a regional atmospheric model. It exhibits prominent spatial and seasonal patterns, and it is particularly strong in the South China Sea and along the coast of East Asia. This makes an accurate prediction and projection of TC landfall extremely challenging in these regions. In contrast, basin-integrated metrics (e.g., total TC counts and TC days) are more predictable.

Full access
Xin-Zhong Liang, Wei-Chyung Wang, and Michael P. Dudek

Abstract

Observed and general circulation climate model (GCM) simulated interannual teleconnection patterns in the Northern Hemisphere are compared on a monthly basis. The study was based on 1946–1991 observations and two separate 100-year simulations corresponding to the present climate and a greenhouse warming climate. The teleconnection patterns are characterized by action centers and composite extreme anomaly (CEA) distributions. The definition and comparison of observed and simulated patterns include examination of time persistence, spatial coherence as well as consistent signatures between 500-mb height, sea level pressure, and surface air temperature.

For the present climate simulation, the GCM reproduces observed spatial and temporal variations of the action centers of four principal teleconnection patterns: the North Atlantic oscillation, the North Pacific oscillation, the Pacific/North American pattern, and the Eurasian pattern. Substantial model biases exist in the magnitude, regional structure as well as monthly transition of anomalies. The CEA regional characteristics are better simulated over land than over the oceans. For example, the model most accurately simulates the Eurasian pattern, which has its dominant action centers over Eurasia. In addition, all three climate variables exhibit substantial anomalies for each land-based action center. In contrast, over the oceans, the model systematically underestimates sea level pressure and 500-mb height CEAs, while it produces small surface temperature responses. It is suggested that atmospheric dynamics associated with flow instability is likely to be the dominant mechanism that generates these teleconnections, while the lack of interactive ocean dynamics may be responsible for small responses over the oceans.

In the greenhouse warming climate, the GCM continues to simulate the four interannual teleconnection patterns. Systematic changes, however, are found for the Pacific/North American and Eurasian patterns in winter, where the action centers shift to the east and the CEAs weaken over land. These results must be considered to be exploratory because of the use of a mixed layer ocean that does not include oceanic dynamics.

Full access
David A. Portman, Wei-Chyung Wang, and Thomas R. Karl

Abstract

Validation of general circulation model (GCM) current climate simulations is important for further GCM development and application to climate change studies. So far, studies that compare GCM output with observations have focused primarily on large-scale spatial averages of the surface climate variables. Here we discuss two approaches to compare output of individual GCM grid boxes with local station observations near the surface and in the free troposphere. The first approach, proposed by Chervin, involves the application of standard parametric statistical analysis and hypothesis testing procedures. The second approach is nonparametric in the sense that no ideal distributions are postulated a priori to ascertain significance of the difference of mean temperature or the ratio of the temperature variance between model grid boxes and local stations. Instead, station observations are first subjected to a bootstrap technique and then used to define a unique set of distributions and confidence limits for each GCM grid box.

To demonstrate the usefulness of the two approaches, we compare daily and seasonal gridbox temperatures simulated by the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM1) with station temperatures at the surface, 850-mb, 500-mb, and 300-mb levels for three different areas in the United States. We find that although CCM1 gridbox temperatures are mostly cooler than station temperatures, they are equally variable. For all grid boxes, gridbox-to-station differences decrease with height and vary with time of year. We conclude that the techniques presented here can provide useful comparisons of GCM regional and local observed temperatures. Application to other variables and GCMs is also discussed.

Full access
Ling Ling Liu, Wei Wang, and Rui Xin Huang

Abstract

Wind stress and tidal dissipation are the most important sources of mechanical energy for maintaining the oceanic general circulation. The contribution of mechanical energy due to tropical cyclones can be a vitally important factor in regulating the oceanic general circulation and its variability. However, previous estimates of wind stress energy input were based on low-resolution wind stress data in which strong nonlinear events, such as tropical cyclones, were smoothed out.

Using a hurricane–ocean coupled model constructed from an axisymmetric hurricane model and a three-layer ocean model, the rate of energy input to the world’s oceans induced by tropical cyclones over the period from 1984 to 2003 was estimated. The energy input is estimated as follows: 1.62 TW to the surface waves and 0.10 TW to the surface currents (including 0.03 TW to the near-inertial motions). The rate of gravitational potential energy increase due to tropical cyclones is 0.05 TW. Both the energy input from tropical cyclones and the increase of gravitational potential energy of the ocean show strong interannual and decadal variability with an increasing rate of 16% over the past 20 years. The annual mean diapycnal upwelling induced by tropical cyclones over the past 20 years is estimated as 39 Sv (Sv ≡ 106 m3 s−1). Owing to tropical cyclones, diapycnal mixing in the upper ocean (below the mixed layer) is greatly enhanced. Within the regimes of strong activity of tropical cyclones, the increase of diapycnal diffusivity is on the order of (1 − 6) × 10−4 m2 s−1. The tropical cyclone–related energy input and diapycnal mixing may play an important role in climate variability, ecology, fishery, and environments.

Full access