Search Results

You are looking at 41 - 50 of 136 items for

  • Author or Editor: Yao Yao x
  • Refine by Access: All Content x
Clear All Modify Search
Mao-Sung Yao and Anthony D. Del Genio

Abstract

The influence of the sea surface temperature distribution on cloud feedbacks is studied by making two sets of doubled CO2 experiments with the Goddard Institute for Space Studies (GISS) GCM at 4° latitude × 5° longitude resolution. One set uses Q fluxes obtained by prescribing observed sea surface temperatures (MODELII′), and the other set uses Q fluxes obtained by prescribing the simulated sea surface temperature of a coupled ocean–atmosphere model (MODELIIO). The global and annual mean surface air temperature change (ΔT s) obtained in MODELII′ is reduced from 4.11° to 3.02°C in MODELIIO. This reduced sensitivity, aside from reduced sea ice/snow–albedo feedback, is mainly due to cloud feedback that becomes nearly neutral in MODELIIO. Furthermore, the negative effect on climate sensitivity of anvil clouds of large optical thickness identified by Yao and Del Genio changes its sign in MODELIIO primarily due to sharply reduced increases of cloud water in the tropical upper troposphere. Colder tropical sea surface temperature in MODELIIO results in weaker deep convective activity and a more humid lower atmosphere in the warmer climate relative to MODELII′, which then removes the negative feedback of anvil clouds and sharply reduces the positive feedback of low clouds. However, an overall positive cloud optical thickness feedback is still maintained in MODELIIO.

It is suggested that the atmospheric climate sensitivity, partially due to changes in cloud feedbacks, may be significantly different for climate changes associated with different patterns of sea surface temperature change, as for example in warm versus cold paleoclimate epochs. Likewise, the climate sensitivity in coupled atmosphere–ocean models is also likely to be significantly different from the results obtained in Q-flux models due to the different simulations of sea surface temperature patterns in each type of model.

Full access
Dehai Luo, Yiqing Xiao, Yao Yao, Aiguo Dai, Ian Simmonds, and Christian L. E. Franzke

Abstract

In Part I of this study, the impact of Ural blocking (UB) on the warm Arctic–cold Eurasian (WACE) pattern associated with the winter (DJF) arctic sea ice loss during 1979–2013 is examined by dividing the arctic sea ice reduction region into two dominant subregions: the Barents and Kara Seas (BKS) and the North American high-latitude (NAH) region (Baffin and Hudson Bay, Davis Strait, and Labrador Sea). It is found that atmospheric response to arctic sea ice loss resembles a negative Arctic response oscillation with a dominant positive height anomaly over the Eurasian subarctic region. Regression analyses of the two subregions further show that the sea ice loss over the BKS corresponds to the UB pattern together with a positive North Atlantic Oscillation (NAO+) and is followed by a WACE anomaly, while the sea ice reduction in the NAH region corresponds to a negative NAO (NAO) pattern with a cold anomaly over northern Eurasia.

Further analyses reveal that the UB pattern is more persistent during the period 2000–13 (P2) than 1979–99 (P1) because of the reduced middle-to-high-latitude mean westerly winds over Eurasia associated with the intense BKS warming. During P2 the establishment of the UB becomes a slow process because of the role of the BKS warming, while its decay is slightly rapid. In the presence of the long-lived UB that often occurs with the NAO+, the BKS-warming-induced DJF-mean anticyclonic anomaly is intensified and widened and then expands southward during P2 to amplify the WACE pattern and induce the southward displacement of its cold anomaly and the further loss of the BKS sea ice. Thus, midlatitude Eurasian cold events should be more frequent as the sea ice loss continues over the BKS.

Full access
Shangfeng Chen, Renguang Wu, Wen Chen, and Shuailei Yao

Abstract

The present study reveals a marked enhancement in the relationship between Eurasian winter and spring atmospheric interannual variability since the early 1990s. Specifically, the dominant mode of winter Eurasian 500-hPa geopotential height anomalies, with same-sign anomalies over southern Europe and East Asia and opposite-sign anomalies over north-central Eurasia, is largely maintained to the following spring after the early 1990s, but not before the early 1990s. The maintenance of the dominant atmospheric circulation anomaly pattern after the early 1990s is associated with a triple sea surface temperature (SST) anomaly pattern in the North Atlantic that is sustained from winter to the subsequent spring. This triple SST anomaly pattern triggers an atmospheric wave train over the North Atlantic through Eurasia during winter through spring. Atmospheric model experiments verify the role of the triple SST anomaly in maintaining the Eurasian atmospheric circulation anomalies. By contrast, before the early 1990s, marked SST anomalies related to the winter dominant mode only occur in the tropical North Atlantic during winter and they disappear during the following spring. The triple SST anomaly pattern after the early 1990s forms in response to a meridional atmospheric dipole over the North Atlantic induced by a La Niña–like cooling over tropical Pacific, and its maintenance into the following spring may be via a positive air–sea interaction process over the North Atlantic. Results of this analysis suggest a potential source for the seasonal prediction of the Eurasian spring climate.

Full access
Yuan Sun, Lan Yi, Zhong Zhong, and Yao Ha

Abstract

The latest version of the Weather Research and Forecasting model (WRFV3.5) is used to evaluate the performance of the Grell and Freitas (GF13) cumulus parameterization scheme on the model convergence in simulations of a tropical cyclone (TC) at gray-zone resolutions. The simulated TC intensity converges to a finite limit as the grid spacing varies from 7.5 to 1 km. The reasons for the model convergence are investigated from perspectives of subgrid-scale processes and thermodynamic and dynamic structures. It is found that the impacts of above factors are notably different with varying model resolutions. The convective heating and drying increase as the grid spacing decreases, which inhibits the explicit microphysical parameterization preventing the simulated TC from overly intensifying. As the grid spacing decreases from 7.5 to 5 km, the TC intensity increases because of a stronger secondary circulation, a larger magnitude and proportion of strong eyewall updraft, and a greater amount of latent heating in the eyewall. As the grid spacing decreases from 5 to 3 km, the radius of maximum wind (RMW) decreases and the radial pressure gradient increases leading to an increase in TC intensity. The simulated TC intensity changes slightly as the grid spacing decreases from 3 to 1 km since the RMW and the storm structure both change little. The slight changes in the simulated TC intensity at such high resolutions indicate a great model convergence. Therefore, the GF13 presents an appropriate option that increases the model convergence in the TC intensity simulation at gray-zone resolution.

Full access
Haijun Yang, Qin Wen, Jie Yao, and Yuxing Wang

Abstract

Using a coupled Earth climate model, freshwater forcing experiments are performed to study the Bjerknes compensation (BJC) between meridional atmosphere heat transport (AHT) and meridional ocean heat transport (OHT). Freshwater hosing in the North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) and thus reduces the northward OHT in the Atlantic significantly, leading to a cooling (warming) in the surface layer in the Northern (Southern) Hemisphere. This results in an enhanced Hadley cell and northward AHT. Meanwhile, the OHT in the Indo-Pacific is increased in response to the Hadley cell change, partially offsetting the reduced OHT in the Atlantic. Two compensations occur here: compensation between the AHT and the Atlantic OHT, and that between the Indo-Pacific OHT and the Atlantic OHT. The AHT change undercompensates the OHT change by about 60% in the extratropics, while the former overcompensates the latter by about 30% in the tropics due to the Indo-Pacific change. The BJC can be understood from the viewpoint of large-scale circulation change. However, the intrinsic mechanism of BJC is related to the climate feedback of the Earth system. The authors’ coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy balance, and local climate feedback determines the extent of BJC, consistent with previous theoretical results. Even during the transient period of climate change, the BJC is well established when the ocean heat storage is slowly varying and its change is much weaker than the net local heat flux change at the ocean surface. The BJC can be deduced from the local climate feedback. Under the freshwater forcing, the overcompensation in the tropics is mainly caused by the positive longwave feedback related to clouds, and the undercompensation in the extratropics is due to the negative longwave feedback related to surface temperature change. Different dominant feedbacks determine different BJC scenarios in different regions, which are in essence constrained by local energy balance.

Full access
T. Yao, Howard J. Freeland, and Lawrence A. Mysak

Abstract

Six current-meter mooring were deployed in a line approximately 600 km in length along the continental shelf of British Columbia. Analysis of the low frequency (periods exceeding a day) fluctuations in current for the winter 1981–82 period is discussed. Alongshore currents off Vancouver Island are mutually correlated with time lag less than a day. The region of mutual correlation does not extend north of Vancouver Island, across Queen Charlotte Sound. Coherence is observed between currents south and north of Queen Charlotte Sound only in a frequency band where there is mutual coherence with local wind. A comparison is made between observation and free coastal-trapped wave theory. Off northern Vancouver Island, where the shelf is narrower than off southern Vancouver Island, there is increased vertical shear, a feature of the second coastal-trapped wave mode. A consistency test is applied using the cross spectral matrix of alongshore components of velocity. In the dominant energy-containing frequency bands (periods ≳10 days), the structure of alongshore currents off Vancouver Island is consistent with the two lowest free coastal-trapped wave modes locked in phase.

Full access
Yao Ha, Zhong Zhong, Xiuqun Yang, and Yuan Sun

Abstract

This study focuses on statistical analysis of anomalous tropical cyclone (TC) activities and the physical mechanisms behind these anomalies. Different patterns of decaying of the warm sea surface temperature anomaly (SSTA) over the equatorial central-eastern Pacific are categorized into three types: eastern Pacific warming decaying to La Niña (EPWDL), eastern Pacific warming decaying to a neutral phase (EPWDN), and a central Pacific warming decaying year (CPWD). Differences in TC activity over the western North Pacific (WNP) corresponding to the above three types are discussed, and possible mechanisms are proposed. For EPWDL, TC genesis shows a significant positive (negative) anomaly over the northwestern (southeastern) WNP and more TCs move westward and make landfall over the southern East Asian coast. This is attributed primarily to the combined modulation of La Niña and the warm equatorial east Indian Ocean SSTA. For EPWDN, enhanced TC genesis is observed over the northeastern WNP, and suppressed TC activity is located mainly in the zonal region extending from the Philippine Sea to the eastern WNP, close to 160°E. Most of the TCs formed over the eastern WNP experience early recurvature east of 140°E, then move northeastward; hence, fewer TCs move northwestward to make landfall over the East Asian coast. For CPWD, the enhanced TC activity appears over the western WNP. This is due to the weak anomalous cyclonic circulation over the Philippines, primarily caused by the weaker, more westward-shifting warm SSTA compared to that in the previous warming year over the central Pacific.

Full access
Jun Yang, Weitao Lu, Ying Ma, and Wen Yao

Abstract

Cloud detection is a basic research for achieving cloud-cover state and other cloud characteristics. Because of the influence of sunlight, the brightness of sky background on the ground-based cloud image is usually nonuniform, which increases the difficulty for cirrus cloud detection, and few detection methods perform well for thin cirrus clouds. This paper presents an effective background estimation method to eliminate the influence of variable illumination conditions and proposes a background subtraction adaptive threshold method (BSAT) to detect cirrus clouds in visible images for the small field of view and mixed clear–cloud scenes. The BSAT algorithm consists of red-to-blue band operation, background subtraction, adaptive threshold selection, and binarization. The experimental results show that the BSAT algorithm is robust for all types of cirrus clouds, and the quantitative evaluation results demonstrate that the BSAT algorithm outperforms the fixed threshold (FT) and adaptive threshold (AT) methods in cirrus cloud detection.

Full access
Zhanyu Yao, Wanbiao Li, Yuanjing Zhu, Bolin Zhao, and Yong Chen

Abstract

The Tibetan Plateau is a unique location for studying the global climate and China's severe weather. The precipitation on the Tibetan Plateau can be studied conveniently with the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). It is shown that the TMI brightness temperature at 85 GHz in the vertical polarization (TB85V) is negatively correlated to the surface rain rate, but a very low value of TB85V does not correspond to very intense surface rain rates on the Tibetan Plateau, a result that is different from what is observed in other areas of the world. For surface precipitation retrieval on the Tibetan Plateau from TMI, the effect from snow cover on precipitation retrieval is removed before analysis of precipitation. Using the dynamic cluster K-mean method, five categories of surface types and rain areas are identified on the Tibetan Plateau: dry soil, wet soil, water area, stratiform rain area, and convective rain area. The precipitation areas are screened by classification before the precipitation retrieval. Two datasets of rain-free areas and precipitation areas are formed after surface classification. Based on the dataset of rain-free areas, the value of TB85V can be simulated well by TB10V, TB19V, and TB21V when it is not raining. By means of the dataset of precipitation areas, it is revealed that the scattering index over land (SIL) is positively correlated and the polarization-corrected brightness temperature at 85 GHz (PCT85) is negatively correlated with the surface rain rate. With SIL, PCT85, and their combinations as retrieval algorithms, three precipitation retrieval formulas are proposed in which the SIL algorithm is most suitable for small rain retrieval, the PCT85 algorithm is most suitable for moderate rain retrieval, and the combined SIL and PCT85 algorithm is most suitable for relatively large rain retrieval on the Tibetan Plateau. By means of two thresholds, 265 and 245 K, for TB85V, the combination of the three formulas is applied to precipitation retrieval on the Tibetan Plateau during the Tibetan Plateau Experiment Intensive Observing Period of 1998, resulting in acceptable and encouraging surface rain-rate retrievals. Intercomparison among the TMI algorithms and the 17 Special Sensor Microwave Imager algorithms from the second Precipitation Intercomparison Project demonstrates that the comprehensive application of the TMI algorithms has good precision and error index and is suitable for precipitation retrieval on the Tibetan Plateau.

Full access
Yao Ha, Zhong Zhong, Yimin Zhu, and Yijia Hu

Abstract

The contribution of barotropic energy conversion to tropical cyclone (TC) activity over the western North Pacific (WNP) during warm and cold phases of El Niño–Southern Oscillation (ENSO) is investigated by separating TC vortices from reanalysis data and using a linearized eddy kinetic energy tendency equation. By comparing the characteristics of TC disturbances with synoptic-scale disturbances, it is found that the modulation of ENSO on the WNP TC intensity is presented more objectively by using TC kinetic energy (EKETC) than eddy kinetic energy (EKE). Barotropic energy conversion (KmKe) into TC disturbances (KmKeTC) is an effective indicator in detecting the barotropic energy source of low-level cyclone genesis and maintenance during the ENSO cycle. However, its dynamical processes play different roles. Shear in large-scale zonal wind and convergence in large-scale meridional wind provide direct barotropic energy source for TC genesis, but make effects in different regions of the WNP. In contrast, convergence in large-scale zonal and shear in large-scale meridional wind exert little influence on TC genesis during ENSO.

Full access