Search Results

You are looking at 51 - 52 of 52 items for

  • Author or Editor: Anthony D. Del Genio x
  • Refine by Access: All Content x
Clear All Modify Search
Jia-Lin Lin
,
George N. Kiladis
,
Brian E. Mapes
,
Klaus M. Weickmann
,
Kenneth R. Sperber
,
Wuyin Lin
,
Matthew C. Wheeler
,
Siegfried D. Schubert
,
Anthony Del Genio
,
Leo J. Donner
,
Seita Emori
,
Jean-Francois Gueremy
,
Frederic Hourdin
,
Philip J. Rasch
,
Erich Roeckner
, and
John F. Scinocca

Abstract

This study evaluates the tropical intraseasonal variability, especially the fidelity of Madden–Julian oscillation (MJO) simulations, in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of daily precipitation from each model’s twentieth-century climate simulation are analyzed and compared with daily satellite-retrieved precipitation. Space–time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby–gravity (MRG), and eastward inertio–gravity (EIG) and westward inertio–gravity (WIG) waves. The variance and propagation of the MJO, defined as the eastward wavenumbers 1–6, 30–70-day mode, are examined in detail.

The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal variability. The total intraseasonal (2–128 day) variance of precipitation is too weak in most of the models. About half of the models have signals of convectively coupled equatorial waves, with Kelvin and MRG–EIG waves especially prominent. However, the variances are generally too weak for all wave modes except the EIG wave, and the phase speeds are generally too fast, being scaled to excessively deep equivalent depths. An interesting result is that this scaling is consistent within a given model across modes, in that both the symmetric and antisymmetric modes scale similarly to a certain equivalent depth. Excessively deep equivalent depths suggest that these models may not have a large enough reduction in their “effective static stability” by diabatic heating.

The MJO variance approaches the observed value in only 2 of the 14 models, but is less than half of the observed value in the other 12 models. The ratio between the eastward MJO variance and the variance of its westward counterpart is too small in most of the models, which is consistent with the lack of highly coherent eastward propagation of the MJO in many models. Moreover, the MJO variance in 13 of the 14 models does not come from a pronounced spectral peak, but usually comes from part of an overreddened spectrum, which in turn is associated with too strong persistence of equatorial precipitation. The two models that arguably do best at simulating the MJO are the only ones having convective closures/triggers linked in some way to moisture convergence.

Full access
Gavin A. Schmidt
,
Reto Ruedy
,
James E. Hansen
,
Igor Aleinov
,
Nadine Bell
,
Mike Bauer
,
Susanne Bauer
,
Brian Cairns
,
Vittorio Canuto
,
Ye Cheng
,
Anthony Del Genio
,
Greg Faluvegi
,
Andrew D. Friend
,
Tim M. Hall
,
Yongyun Hu
,
Max Kelley
,
Nancy Y. Kiang
,
Dorothy Koch
,
Andy A. Lacis
,
Jean Lerner
,
Ken K. Lo
,
Ron L. Miller
,
Larissa Nazarenko
,
Valdar Oinas
,
Jan Perlwitz
,
Judith Perlwitz
,
David Rind
,
Anastasia Romanou
,
Gary L. Russell
,
Makiko Sato
,
Drew T. Shindell
,
Peter H. Stone
,
Shan Sun
,
Nick Tausnev
,
Duane Thresher
, and
Mao-Sung Yao

Abstract

A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere temperatures and winds, cloud heights, precipitation, and sea level pressure. Data–model comparisons continue, however, to highlight persistent problems in the marine stratocumulus regions.

Full access