Search Results
You are looking at 51 - 60 of 63 items for
- Author or Editor: Carlos R. Mechoso x
- Refine by Access: All Content x
Abstract
The trajectories in the lower stratosphere of isopycnic balloons released from Antarctica by Vorcore and Concordiasi field campaigns during the southern springs of 2005 and 2010 showed events of latitudinal transport inside the stratospheric polar vortex, both away from and toward the poleward flank of the polar-night jet. The present paper applies trajectory-based diagnostic techniques to examine mechanisms at work during such events. Reverse domain-filling calculations of potential vorticity (PV) fields from the ECMWF Interim Re-Analysis (ERA-Interim) dataset during the events show irreversible filamentation of the PV fields in the inner side of the polar-night jet, which is a signature of planetary (Rossby) wave breaking. Balloon motions during the events are fairly consistent with the PV filaments. Events of both large (~15° of arc length) and small (~5° of arc length) balloon displacements from the vortex edge are associated, respectively, with deep and shallow penetration into the core of the elongated PV contours. Additionally, the Lagrangian descriptor M is applied to study the configuration of Lagrangian structures during the events. Breaking Rossby waves inside the vortex lead to the presence of hyperbolic points. The geometric configuration of the invariant manifolds associated with the hyperbolic trajectories helps to understand the apparent chaotic behavior of balloons' motions and to identify and analyze balloon transport events not captured by reverse domain-filling calculations.
The Antarctic polar vortex edge is an effective barrier to air parcel crossings. Rossby wave breaking inside the vortex, however, can contribute to tracer mixing inside the vortex and to occasional air crossings of the edge.
Abstract
The trajectories in the lower stratosphere of isopycnic balloons released from Antarctica by Vorcore and Concordiasi field campaigns during the southern springs of 2005 and 2010 showed events of latitudinal transport inside the stratospheric polar vortex, both away from and toward the poleward flank of the polar-night jet. The present paper applies trajectory-based diagnostic techniques to examine mechanisms at work during such events. Reverse domain-filling calculations of potential vorticity (PV) fields from the ECMWF Interim Re-Analysis (ERA-Interim) dataset during the events show irreversible filamentation of the PV fields in the inner side of the polar-night jet, which is a signature of planetary (Rossby) wave breaking. Balloon motions during the events are fairly consistent with the PV filaments. Events of both large (~15° of arc length) and small (~5° of arc length) balloon displacements from the vortex edge are associated, respectively, with deep and shallow penetration into the core of the elongated PV contours. Additionally, the Lagrangian descriptor M is applied to study the configuration of Lagrangian structures during the events. Breaking Rossby waves inside the vortex lead to the presence of hyperbolic points. The geometric configuration of the invariant manifolds associated with the hyperbolic trajectories helps to understand the apparent chaotic behavior of balloons' motions and to identify and analyze balloon transport events not captured by reverse domain-filling calculations.
The Antarctic polar vortex edge is an effective barrier to air parcel crossings. Rossby wave breaking inside the vortex, however, can contribute to tracer mixing inside the vortex and to occasional air crossings of the edge.
Abstract
Rossby wave breaking (RWB) plays a central role in the evolution of stratospheric flows. The generation and evolution of RWB is examined in the simple dynamical framework of a one-layer shallow-water system on a sphere. The initial condition represents a realistic, zonally symmetric velocity profile corresponding to the springtime southern stratosphere. Single zonal wavenumber Rossby waves, which are either stationary or traveling zonally with realistic speeds, are superimposed on the initial velocity profile. Particular attention is placed on the Lagrangian structures associated with RWB. The Lagrangian analysis is based on the calculation of trajectories and the application of a diagnostic tool known as the “M” function. Hyperbolic trajectories (HTs), produced by the transverse intersections of stable and unstable invariant manifolds, may yield chaotic saddles in M. Previous studies associated HTs with “cat’s eyes” generated by planetary wave breaking at the critical levels. HTs, and hence RWB, are found both outside and inside the stratospheric polar vortex (SPV). Significant findings are as follows: (i) stationary forcing produces HTs only outside of the SPV and (ii) eastward-traveling wave forcing can produce HTs both outside and inside of the SPV. In either case, HTs appear at or near the critical latitudes. RWB was found to occur inside the SPV even when the forcing was located completely outside. In all cases, the westerly jet remained impermeable throughout the simulations. The results suggest that the HT inside the SPV observed by de la Cámara et al. during the southern spring 2005 was due to RWB of an eastward-traveling wave of wavenumber 1.
Abstract
Rossby wave breaking (RWB) plays a central role in the evolution of stratospheric flows. The generation and evolution of RWB is examined in the simple dynamical framework of a one-layer shallow-water system on a sphere. The initial condition represents a realistic, zonally symmetric velocity profile corresponding to the springtime southern stratosphere. Single zonal wavenumber Rossby waves, which are either stationary or traveling zonally with realistic speeds, are superimposed on the initial velocity profile. Particular attention is placed on the Lagrangian structures associated with RWB. The Lagrangian analysis is based on the calculation of trajectories and the application of a diagnostic tool known as the “M” function. Hyperbolic trajectories (HTs), produced by the transverse intersections of stable and unstable invariant manifolds, may yield chaotic saddles in M. Previous studies associated HTs with “cat’s eyes” generated by planetary wave breaking at the critical levels. HTs, and hence RWB, are found both outside and inside the stratospheric polar vortex (SPV). Significant findings are as follows: (i) stationary forcing produces HTs only outside of the SPV and (ii) eastward-traveling wave forcing can produce HTs both outside and inside of the SPV. In either case, HTs appear at or near the critical latitudes. RWB was found to occur inside the SPV even when the forcing was located completely outside. In all cases, the westerly jet remained impermeable throughout the simulations. The results suggest that the HT inside the SPV observed by de la Cámara et al. during the southern spring 2005 was due to RWB of an eastward-traveling wave of wavenumber 1.
Abstract
Interannual variability in the southern and equatorial Atlantic is investigated using an atmospheric general circulation model (AGCM) coupled to a slab ocean model (SOM) in the Atlantic in order to isolate features of air–sea interactions particular to this basin. Simulated covariability between sea surface temperatures (SSTs) and atmosphere is very similar to the observed non-ENSO-related covariations in both spatial structures and time scales. The leading simulated empirical coupled mode resembles the zonal mode in the tropical Atlantic, despite the lack of ocean dynamics, and is associated with baroclinic atmospheric anomalies in the Tropics and a Rossby wave train extending to the extratropics, suggesting an atmospheric response to tropical SST forcing. The second non-ENSO mode is the subtropical dipole in the SST with a mainly equivalent barotropic atmospheric anomaly centered on the subtropical high and associated with a midlatitude wave train, consistent with atmospheric forcing of the subtropical SST.
The power spectrum of the tropical mode in both simulation and observation is red with two major interannual peaks near 5 and 2 yr. The quasi-biennial component exhibits a progression between the subtropics and the Tropics. It is phase locked to the seasonal cycle and owes its existence to the imbalances between SST–evaporation and SST–shortwave radiation feedbacks. These feedbacks are found to be reversed between the western and eastern South Atlantic, associated with the dominant role of deep convection in the west and that of shallow clouds in the east. A correct representation of tropical–extratropical interactions and of deep and shallow clouds may thus be crucial to the simulation of realistic interannual variability in the southern and tropical Atlantic.
Abstract
Interannual variability in the southern and equatorial Atlantic is investigated using an atmospheric general circulation model (AGCM) coupled to a slab ocean model (SOM) in the Atlantic in order to isolate features of air–sea interactions particular to this basin. Simulated covariability between sea surface temperatures (SSTs) and atmosphere is very similar to the observed non-ENSO-related covariations in both spatial structures and time scales. The leading simulated empirical coupled mode resembles the zonal mode in the tropical Atlantic, despite the lack of ocean dynamics, and is associated with baroclinic atmospheric anomalies in the Tropics and a Rossby wave train extending to the extratropics, suggesting an atmospheric response to tropical SST forcing. The second non-ENSO mode is the subtropical dipole in the SST with a mainly equivalent barotropic atmospheric anomaly centered on the subtropical high and associated with a midlatitude wave train, consistent with atmospheric forcing of the subtropical SST.
The power spectrum of the tropical mode in both simulation and observation is red with two major interannual peaks near 5 and 2 yr. The quasi-biennial component exhibits a progression between the subtropics and the Tropics. It is phase locked to the seasonal cycle and owes its existence to the imbalances between SST–evaporation and SST–shortwave radiation feedbacks. These feedbacks are found to be reversed between the western and eastern South Atlantic, associated with the dominant role of deep convection in the west and that of shallow clouds in the east. A correct representation of tropical–extratropical interactions and of deep and shallow clouds may thus be crucial to the simulation of realistic interannual variability in the southern and tropical Atlantic.
Abstract
The southern subtropical anticyclones are notably stronger in austral winter than summer, particularly over the Atlantic and Indian Ocean basins. This is in contrast with the Northern Hemisphere (NH), in which subtropical anticyclones are more intense in summer according to the “monsoon heating” paradigm. To better understand the winter intensification of southern subtropical anticyclones, the present study explores the interhemispheric response to monsoon heating in the NH during austral winter. A specially designed suite of numerical model experiments is performed in which summer monsoons in the NH are artificially weakened. These experiments are performed with both an atmospheric general circulation model and a simple two-layer model. The highlight of the findings presented here is that during the boreal summer enhanced tropical convection activity in the NH plays important roles in either maintaining or strengthening the southern subtropical anticyclones. Enhanced NH convection largely associated with the major summer monsoons produces subsidence over the equatorial oceans and the tropical Southern Hemisphere via interhemispheric meridional overturning circulations and increases the sea level pressure locally. In addition, suppressed convection over some regions of climatological subsidence produces stationary barotropic Rossby waves that propagate far beyond the tropics. These stationary barotropic Rossby waves and those forced directly by the summer heating in the NH are spatially phased to strengthen the southern subtropical anticyclones over all three oceans. The interhemispheric response to the NH summer monsoons is most dramatic in the South Pacific, where the subtropical anticyclone nearly disappears in the austral winter without the influence of the NH.
Abstract
The southern subtropical anticyclones are notably stronger in austral winter than summer, particularly over the Atlantic and Indian Ocean basins. This is in contrast with the Northern Hemisphere (NH), in which subtropical anticyclones are more intense in summer according to the “monsoon heating” paradigm. To better understand the winter intensification of southern subtropical anticyclones, the present study explores the interhemispheric response to monsoon heating in the NH during austral winter. A specially designed suite of numerical model experiments is performed in which summer monsoons in the NH are artificially weakened. These experiments are performed with both an atmospheric general circulation model and a simple two-layer model. The highlight of the findings presented here is that during the boreal summer enhanced tropical convection activity in the NH plays important roles in either maintaining or strengthening the southern subtropical anticyclones. Enhanced NH convection largely associated with the major summer monsoons produces subsidence over the equatorial oceans and the tropical Southern Hemisphere via interhemispheric meridional overturning circulations and increases the sea level pressure locally. In addition, suppressed convection over some regions of climatological subsidence produces stationary barotropic Rossby waves that propagate far beyond the tropics. These stationary barotropic Rossby waves and those forced directly by the summer heating in the NH are spatially phased to strengthen the southern subtropical anticyclones over all three oceans. The interhemispheric response to the NH summer monsoons is most dramatic in the South Pacific, where the subtropical anticyclone nearly disappears in the austral winter without the influence of the NH.
Abstract
The mechanisms that control the interhemispheric teleconnections from tropical heat sources are investigated using an intermediate complexity model [a quasi-equilibrium tropical circulation model (QTCM)] and a simple linear two-level model with dry dynamics. Illustrating the interhemispheric teleconnection process with an Atlantic warm pool principal case, the heat source directly excites a baroclinic response that spreads across the equator. Then, three processes involving baroclinic–barotropic interactions—shear advection, surface drag, and vertical advection—force a cross-equatorial barotropic Rossby wave response. An analysis of these processes in QTCM simulations indicates that 1) shear advection has a pattern that roughly coincides with the baroclinic signal in the tropics and subtropics, 2) surface drag has large amplitude and spatial extent and can be very effective in forcing barotropic motions around the globe, and 3) vertical advection has a significant contribution locally and remotely where large vertical motions and vertical shear occur. The simple model is modified to perform experiments in which each of these three mechanisms may be included or omitted. By adding surface drag and vertical advection, and comparing each to shear advection, the effects of the three mechanisms on the generation and propagation of the barotropic Rossby waves are shown to be qualitatively similar to the results in QTCM. It is also found that the moist processes included in the QTCM can feed back on the teleconnection process and alter the teleconnection pattern by enlarging the prescribed tropical heating in both intensity and geographical extent and by inducing remote precipitation anomalies by interaction with the basic state.
Abstract
The mechanisms that control the interhemispheric teleconnections from tropical heat sources are investigated using an intermediate complexity model [a quasi-equilibrium tropical circulation model (QTCM)] and a simple linear two-level model with dry dynamics. Illustrating the interhemispheric teleconnection process with an Atlantic warm pool principal case, the heat source directly excites a baroclinic response that spreads across the equator. Then, three processes involving baroclinic–barotropic interactions—shear advection, surface drag, and vertical advection—force a cross-equatorial barotropic Rossby wave response. An analysis of these processes in QTCM simulations indicates that 1) shear advection has a pattern that roughly coincides with the baroclinic signal in the tropics and subtropics, 2) surface drag has large amplitude and spatial extent and can be very effective in forcing barotropic motions around the globe, and 3) vertical advection has a significant contribution locally and remotely where large vertical motions and vertical shear occur. The simple model is modified to perform experiments in which each of these three mechanisms may be included or omitted. By adding surface drag and vertical advection, and comparing each to shear advection, the effects of the three mechanisms on the generation and propagation of the barotropic Rossby waves are shown to be qualitatively similar to the results in QTCM. It is also found that the moist processes included in the QTCM can feed back on the teleconnection process and alter the teleconnection pattern by enlarging the prescribed tropical heating in both intensity and geographical extent and by inducing remote precipitation anomalies by interaction with the basic state.
Abstract
We present a new empirical orthogonal function (EOF) analysis of winter 500 mb geopotential height anomalies in the Southern Hemisphere. An earlier EOF analysis by two of the present authors prefiltered the anomalies to exclude wavenumbers 5 and higher; we do not. The different preprocessing of data affects the results. All three distinct planetary flow regimes identified in the winter circulation of the Southern Hemisphere by a pattern correlation method are captured by the new set of EOFs; only two of those regimes were captured by the earlier set. The new results, therefore, lend further support to the idea that EOFs point to distinct planetary
Abstract
We present a new empirical orthogonal function (EOF) analysis of winter 500 mb geopotential height anomalies in the Southern Hemisphere. An earlier EOF analysis by two of the present authors prefiltered the anomalies to exclude wavenumbers 5 and higher; we do not. The different preprocessing of data affects the results. All three distinct planetary flow regimes identified in the winter circulation of the Southern Hemisphere by a pattern correlation method are captured by the new set of EOFs; only two of those regimes were captured by the earlier set. The new results, therefore, lend further support to the idea that EOFs point to distinct planetary
Abstract
The sensitivity of a coupled ocean–atmosphere general circulation model to parameterizations of selected physical processes is studied. The parameterizations include those of longwave radiation and surface turbulent fluxes in the atmospheric model, and those of vertical turbulent mixing and penetration of solar radiation in the ocean model. It is shown that the performance of the coupled model is highly sensitive to the parameterization of longwave radiation. This sensitivity is not solely due to the difference in surface radiative flux but involves interactions among radiation, convection, and large-scale dynamics of the atmosphere and ocean. It is concluded that differences in parameterizations can have large impacts on the performance of the coupled model, and these impacts can be very different from what may be expected from uncoupled model simulations.
Abstract
The sensitivity of a coupled ocean–atmosphere general circulation model to parameterizations of selected physical processes is studied. The parameterizations include those of longwave radiation and surface turbulent fluxes in the atmospheric model, and those of vertical turbulent mixing and penetration of solar radiation in the ocean model. It is shown that the performance of the coupled model is highly sensitive to the parameterization of longwave radiation. This sensitivity is not solely due to the difference in surface radiative flux but involves interactions among radiation, convection, and large-scale dynamics of the atmosphere and ocean. It is concluded that differences in parameterizations can have large impacts on the performance of the coupled model, and these impacts can be very different from what may be expected from uncoupled model simulations.
Abstract
Extensive and persistent stratus cloud decks are prominent climatic features off the Peruvian coast. They are believed to play a key role in the coupled atmosphere-ocean processes that determine the sea surface temperature (SST) throughout the eastern tropical Pacific. This notion is examined and further developed using a coupled ocean-atmosphere general circulation model (GCM): a control simulation, in which the simulated amount of Peruvian stratus clouds is unrealistically low, is compared with an experiment in which a stratus cloud deck is prescribed to persistently cover the ocean off the Peruvian coast.
Beneath the prescribed cloud deck SSTs are reduced by up to 5 K, as expected from decreased solar radiation reaching the surface. In addition, there is significant cooling over much of the eastern tropical Pacific south of the equator, and even along the equator well into the central Pacific. The prescribed stratus deck largely alleviates the coupled GCM's warm bias in SST in the southeastern Pacific, which is common to most contemporary coupled GCMS, and produces a distribution of SST with more realistic interhemispheric asymmetries.
Examination of differences between SST evolutions in the enhanced stratus experiment and the control circulation reveals that the remote ocean cooling is not due to a single mechanism. The cooling immediately to the west and north of the region with the prescribed stratus deck is primarily associated with increased evaporation as the southeast trades strengthen. The cooling along the equator in the central Pacific is mainly due to increased oceanic cold advection.
The results of this study suggest that the Peruvian stratus clouds are important in modulating the circulation of the tropical Pacific. The “double ITCZ” syndrome of the coupled GCM, however, does not appear to be solely due to underpredicted stratus cloud cover and requires consideration of other processes in the coupled GCM.
Abstract
Extensive and persistent stratus cloud decks are prominent climatic features off the Peruvian coast. They are believed to play a key role in the coupled atmosphere-ocean processes that determine the sea surface temperature (SST) throughout the eastern tropical Pacific. This notion is examined and further developed using a coupled ocean-atmosphere general circulation model (GCM): a control simulation, in which the simulated amount of Peruvian stratus clouds is unrealistically low, is compared with an experiment in which a stratus cloud deck is prescribed to persistently cover the ocean off the Peruvian coast.
Beneath the prescribed cloud deck SSTs are reduced by up to 5 K, as expected from decreased solar radiation reaching the surface. In addition, there is significant cooling over much of the eastern tropical Pacific south of the equator, and even along the equator well into the central Pacific. The prescribed stratus deck largely alleviates the coupled GCM's warm bias in SST in the southeastern Pacific, which is common to most contemporary coupled GCMS, and produces a distribution of SST with more realistic interhemispheric asymmetries.
Examination of differences between SST evolutions in the enhanced stratus experiment and the control circulation reveals that the remote ocean cooling is not due to a single mechanism. The cooling immediately to the west and north of the region with the prescribed stratus deck is primarily associated with increased evaporation as the southeast trades strengthen. The cooling along the equator in the central Pacific is mainly due to increased oceanic cold advection.
The results of this study suggest that the Peruvian stratus clouds are important in modulating the circulation of the tropical Pacific. The “double ITCZ” syndrome of the coupled GCM, however, does not appear to be solely due to underpredicted stratus cloud cover and requires consideration of other processes in the coupled GCM.
Abstract
The impact of an upper boundary on numerical forecasts is studied by comparing the results of a nine-layer model with a top in the lower stratosphere, to those of a 15-layer model with a top near the stratopause. A single case is considered for which initial conditions are taken from a climatologically adjusted winter simulation produced by the 15-layer model. It is found that, as a result of the lowered upper boundary, them is a marked equatorward shift of upper-level westerlies. Significant errors in the ultra-long waves appear at SW mb within the first five days. Errors at 500 mb then spread to progressively shorter waves with large errors in cyclone-scale waves by day 12. Large errors in an ultra-long, wave (wavenumber 3) after day 10 am associated with the climatological adjustment of the stationary flow to the lowered boundary.
Two different assumptions in the radiation calculation in the nine-layer model am used. Results indicate that radiative effects are of secondary importance to the predictability of waves in the middle troposphere.
Abstract
The impact of an upper boundary on numerical forecasts is studied by comparing the results of a nine-layer model with a top in the lower stratosphere, to those of a 15-layer model with a top near the stratopause. A single case is considered for which initial conditions are taken from a climatologically adjusted winter simulation produced by the 15-layer model. It is found that, as a result of the lowered upper boundary, them is a marked equatorward shift of upper-level westerlies. Significant errors in the ultra-long waves appear at SW mb within the first five days. Errors at 500 mb then spread to progressively shorter waves with large errors in cyclone-scale waves by day 12. Large errors in an ultra-long, wave (wavenumber 3) after day 10 am associated with the climatological adjustment of the stationary flow to the lowered boundary.
Two different assumptions in the radiation calculation in the nine-layer model am used. Results indicate that radiative effects are of secondary importance to the predictability of waves in the middle troposphere.
Abstract
To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale convective transition, a set of statistics characterizing the pickup of precipitation as a function of column water vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture–precipitation relation on tropospheric temperature is evaluated using the hourly output of two versions of the GFDL Atmospheric Model, version 4 (AM4), NCAR CAM5 and superparameterized CAM (SPCAM). The 6-hourly output from the MJO Task Force (MJOTF)/GEWEX Atmospheric System Study (GASS) project is also analyzed. Contrasting statistics produced from individual models that primarily differ in representations of moist convection suggest that convective transition statistics can substantially distinguish differences in convective representation and its interaction with the large-scale flow, while models that differ only in spatial–temporal resolution, microphysics, or ocean–atmosphere coupling result in similar statistics. Most of the models simulate some version of the observed sharp increase in precipitation as CWV exceeds a critical value, as well as that convective onset occurs at higher CWV but at lower column RH as temperature increases. While some models quantitatively capture these observed features and associated probability distributions, considerable intermodel spread and departures from observations in various aspects of the precipitation–CWV relationship are noted. For instance, in many of the models, the transition from the low-CWV, nonprecipitating regime to the moist regime for CWV around and above critical is less abrupt than in observations. Additionally, some models overproduce drizzle at low CWV, and some require CWV higher than observed for strong precipitation. For many of the models, it is particularly challenging to simulate the probability distributions of CWV at high temperature.
Abstract
To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale convective transition, a set of statistics characterizing the pickup of precipitation as a function of column water vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture–precipitation relation on tropospheric temperature is evaluated using the hourly output of two versions of the GFDL Atmospheric Model, version 4 (AM4), NCAR CAM5 and superparameterized CAM (SPCAM). The 6-hourly output from the MJO Task Force (MJOTF)/GEWEX Atmospheric System Study (GASS) project is also analyzed. Contrasting statistics produced from individual models that primarily differ in representations of moist convection suggest that convective transition statistics can substantially distinguish differences in convective representation and its interaction with the large-scale flow, while models that differ only in spatial–temporal resolution, microphysics, or ocean–atmosphere coupling result in similar statistics. Most of the models simulate some version of the observed sharp increase in precipitation as CWV exceeds a critical value, as well as that convective onset occurs at higher CWV but at lower column RH as temperature increases. While some models quantitatively capture these observed features and associated probability distributions, considerable intermodel spread and departures from observations in various aspects of the precipitation–CWV relationship are noted. For instance, in many of the models, the transition from the low-CWV, nonprecipitating regime to the moist regime for CWV around and above critical is less abrupt than in observations. Additionally, some models overproduce drizzle at low CWV, and some require CWV higher than observed for strong precipitation. For many of the models, it is particularly challenging to simulate the probability distributions of CWV at high temperature.