Search Results
You are looking at 51 - 60 of 115 items for
- Author or Editor: H. Zhang x
- Refine by Access: All Content x
Abstract
This study investigates the October and November MJO events observed during the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY)/Dynamics of the MJO (DYNAMO) field campaign through cloud-permitting numerical simulations. The simulations are compared to multiple observational datasets. The control simulation at 9-km horizontal grid spacing captures the slow eastward progression of both the October and November MJO events in surface precipitation, outgoing longwave radiation, zonal wind, humidity, and large-scale vertical motion. The vertical motion shows weak ascent in the leading edge of the MJO envelope, followed by deep ascent during the peak precipitation stage and trailed by a broad second baroclinic mode structure with ascent in the upper troposphere and descent in the lower troposphere. Both the simulation and the observations also show slow northward propagation components and tropical cyclone–like vortices after the passage of the MJO active phase. Comparison with synthesized observations from the northern sounding array shows that the model simulates the passage of the two MJO events over the sounding array region well. Sensitivity experiments to SST indicate that daily SST plays an important role for the November MJO event, but much less so for the October event.
Analysis of the moist static energy (MSE) budget shows that both advection and diabatic processes (i.e., surface fluxes and radiation) contribute to the development of the positive MSE anomaly in the active phase, but their contributions differ by how much they lead the precipitation peak. In comparison to the observational datasets used here, the model simulation may have a stronger surface flux feedback and a weaker radiative feedback. The normalized gross moist stability in the simulations shows an increase from near-zero values to ~0.8 during the active phase, similar to what is found in the observational datasets.
Abstract
This study investigates the October and November MJO events observed during the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY)/Dynamics of the MJO (DYNAMO) field campaign through cloud-permitting numerical simulations. The simulations are compared to multiple observational datasets. The control simulation at 9-km horizontal grid spacing captures the slow eastward progression of both the October and November MJO events in surface precipitation, outgoing longwave radiation, zonal wind, humidity, and large-scale vertical motion. The vertical motion shows weak ascent in the leading edge of the MJO envelope, followed by deep ascent during the peak precipitation stage and trailed by a broad second baroclinic mode structure with ascent in the upper troposphere and descent in the lower troposphere. Both the simulation and the observations also show slow northward propagation components and tropical cyclone–like vortices after the passage of the MJO active phase. Comparison with synthesized observations from the northern sounding array shows that the model simulates the passage of the two MJO events over the sounding array region well. Sensitivity experiments to SST indicate that daily SST plays an important role for the November MJO event, but much less so for the October event.
Analysis of the moist static energy (MSE) budget shows that both advection and diabatic processes (i.e., surface fluxes and radiation) contribute to the development of the positive MSE anomaly in the active phase, but their contributions differ by how much they lead the precipitation peak. In comparison to the observational datasets used here, the model simulation may have a stronger surface flux feedback and a weaker radiative feedback. The normalized gross moist stability in the simulations shows an increase from near-zero values to ~0.8 during the active phase, similar to what is found in the observational datasets.
Abstract
Reliable predictions of water availability and streamflow characteristics, and the impact of climate and land use change on water availability, are central to water resources planning and management. This paper assesses the application of the widely used macroscale hydrologic model, the three-layer Variable Infiltration Capacity model (VIC-3L), to estimate daily streamflow in 191 unregulated catchments across southeast Australia and evaluates the regionalization of model parameters to predict streamflow in ungauged catchments. The parameter values in the VIC-3L model are estimated using three methods: default values, optimized values based on model calibration, and regionalized values based on spatial proximity method. The modeled streamflows from VIC-3L are assessed against the observed streamflows from the catchments. The authors discuss the model performance based on different parameter estimation methods and the effects of rainfall regimes on streamflow prediction. Also the implication of using a priori estimates of parameter values versus optimizing parameter values against observed streamflow to predict the impact of climate and land use change on streamflow is discussed. The VIC-3L model can simulate the streamflow in the catchments across southeast Australia reasonably well, with comparable results to those reported for the same region using conceptual rainfall-runoff models. The model performed better in summer-dominant rainfall catchments and wet catchments than in other catchments. The regionalization based on spatial proximity method performed reasonably well, which demonstrated the potential of VIC-3L model to predict streamflow in ungauged catchments in Australia.
Abstract
Reliable predictions of water availability and streamflow characteristics, and the impact of climate and land use change on water availability, are central to water resources planning and management. This paper assesses the application of the widely used macroscale hydrologic model, the three-layer Variable Infiltration Capacity model (VIC-3L), to estimate daily streamflow in 191 unregulated catchments across southeast Australia and evaluates the regionalization of model parameters to predict streamflow in ungauged catchments. The parameter values in the VIC-3L model are estimated using three methods: default values, optimized values based on model calibration, and regionalized values based on spatial proximity method. The modeled streamflows from VIC-3L are assessed against the observed streamflows from the catchments. The authors discuss the model performance based on different parameter estimation methods and the effects of rainfall regimes on streamflow prediction. Also the implication of using a priori estimates of parameter values versus optimizing parameter values against observed streamflow to predict the impact of climate and land use change on streamflow is discussed. The VIC-3L model can simulate the streamflow in the catchments across southeast Australia reasonably well, with comparable results to those reported for the same region using conceptual rainfall-runoff models. The model performed better in summer-dominant rainfall catchments and wet catchments than in other catchments. The regionalization based on spatial proximity method performed reasonably well, which demonstrated the potential of VIC-3L model to predict streamflow in ungauged catchments in Australia.
Abstract
Boundary layer turbulent processes affect tropical cyclone (TC) structure and intensity change. However, uncertainties in the parameterization of the planetary boundary layer (PBL) under high-wind conditions remain challenging, mostly due to limited observations. This study presents and evaluates a framework of numerical simulation that can be used for a small-domain [O(5)-km] large-eddy simulation (LES) and single-column modeling (SCM) to study the TC boundary layer. The framework builds upon a previous study that uses a few input parameters to represent the TC vortex and adds a simple nudging term for temperature and moisture to account for the complex thermodynamic processes in TCs. The reference thermodynamic profiles at different wind speeds are retrieved from a composite analysis of dropsonde observations of mature hurricanes. Results from LES show that most of the turbulence kinetic energy and vertical momentum flux is associated with resolved processes when horizontal grid spacing is O(10) m. Comparison to observations of turbulence variables such as momentum flux, effective eddy viscosity, and turbulence length scale show that LES produces reasonable results but highlight areas where further observations are necessary. LES results also demonstrate that compared to a classic Ekman-type boundary layer, the TC boundary layer is shallower, develops steady conditions much quicker, and exhibits stronger wind speed near the surface. The utility of this framework is further highlighted by evaluating a first-order PBL parameterization, suggesting that an asymptotic turbulence length scale of 40 m produces a good match to LES results.
Abstract
Boundary layer turbulent processes affect tropical cyclone (TC) structure and intensity change. However, uncertainties in the parameterization of the planetary boundary layer (PBL) under high-wind conditions remain challenging, mostly due to limited observations. This study presents and evaluates a framework of numerical simulation that can be used for a small-domain [O(5)-km] large-eddy simulation (LES) and single-column modeling (SCM) to study the TC boundary layer. The framework builds upon a previous study that uses a few input parameters to represent the TC vortex and adds a simple nudging term for temperature and moisture to account for the complex thermodynamic processes in TCs. The reference thermodynamic profiles at different wind speeds are retrieved from a composite analysis of dropsonde observations of mature hurricanes. Results from LES show that most of the turbulence kinetic energy and vertical momentum flux is associated with resolved processes when horizontal grid spacing is O(10) m. Comparison to observations of turbulence variables such as momentum flux, effective eddy viscosity, and turbulence length scale show that LES produces reasonable results but highlight areas where further observations are necessary. LES results also demonstrate that compared to a classic Ekman-type boundary layer, the TC boundary layer is shallower, develops steady conditions much quicker, and exhibits stronger wind speed near the surface. The utility of this framework is further highlighted by evaluating a first-order PBL parameterization, suggesting that an asymptotic turbulence length scale of 40 m produces a good match to LES results.
Abstract
In the near future, the Global Precipitation Measurement (GPM) mission will provide precipitation observations with unprecedented accuracy and spatial/temporal coverage of the globe. For hydrological applications, the satellite observations need to be downscaled to the required finer-resolution precipitation fields. This paper explores a dynamic downscaling method using ensemble data assimilation techniques and cloud-resolving models. A prototype ensemble data assimilation system using the Weather Research and Forecasting Model (WRF) has been developed. A high-resolution regional WRF with multiple nesting grids is used to provide the first-guess and ensemble forecasts. An ensemble assimilation algorithm based on the maximum likelihood ensemble filter (MLEF) is used to perform the analysis. The forward observation operators from NOAA–NCEP’s gridpoint statistical interpolation (GSI) are incorporated for using NOAA–NCEP operational datastream, including conventional data and clear-sky satellite observations. Precipitation observation operators are developed with a combination of the cloud-resolving physics from NASA Goddard cumulus ensemble (GCE) model and the radiance transfer schemes from NASA Satellite Data Simulation Unit (SDSU). The prototype of the system is used as a test bed to optimally combine observations and model information to produce a dynamically downscaled precipitation analysis. A case study on Tropical Storm Erin (2007) is presented to investigate the ability of the prototype of the WRF Ensemble Data Assimilation System (WRF-EDAS) to ingest information from in situ and satellite observations including precipitation-affected radiance. The results show that the analyses and forecasts produced by the WRF-EDAS system are comparable to or better than those obtained with the WRF-GSI analysis scheme using the same set of observations. An experiment was also performed to examine how the analyses and short-term forecasts of microphysical variables and dynamical fields are influenced by the assimilation of precipitation-affected radiances. The results highlight critical issues to be addressed in the next stage of development such as model-predicted hydrometeor control variables and associated background error covariance, bias estimation, and correction in radiance space, as well as the observation error statistics. While further work is needed to optimize the performance of WRF-EDAS, this study establishes the viability of developing a cloud-scale ensemble data assimilation system that has the potential to provide a useful vehicle for downscaling satellite precipitation information to finer scales suitable for hydrological applications.
Abstract
In the near future, the Global Precipitation Measurement (GPM) mission will provide precipitation observations with unprecedented accuracy and spatial/temporal coverage of the globe. For hydrological applications, the satellite observations need to be downscaled to the required finer-resolution precipitation fields. This paper explores a dynamic downscaling method using ensemble data assimilation techniques and cloud-resolving models. A prototype ensemble data assimilation system using the Weather Research and Forecasting Model (WRF) has been developed. A high-resolution regional WRF with multiple nesting grids is used to provide the first-guess and ensemble forecasts. An ensemble assimilation algorithm based on the maximum likelihood ensemble filter (MLEF) is used to perform the analysis. The forward observation operators from NOAA–NCEP’s gridpoint statistical interpolation (GSI) are incorporated for using NOAA–NCEP operational datastream, including conventional data and clear-sky satellite observations. Precipitation observation operators are developed with a combination of the cloud-resolving physics from NASA Goddard cumulus ensemble (GCE) model and the radiance transfer schemes from NASA Satellite Data Simulation Unit (SDSU). The prototype of the system is used as a test bed to optimally combine observations and model information to produce a dynamically downscaled precipitation analysis. A case study on Tropical Storm Erin (2007) is presented to investigate the ability of the prototype of the WRF Ensemble Data Assimilation System (WRF-EDAS) to ingest information from in situ and satellite observations including precipitation-affected radiance. The results show that the analyses and forecasts produced by the WRF-EDAS system are comparable to or better than those obtained with the WRF-GSI analysis scheme using the same set of observations. An experiment was also performed to examine how the analyses and short-term forecasts of microphysical variables and dynamical fields are influenced by the assimilation of precipitation-affected radiances. The results highlight critical issues to be addressed in the next stage of development such as model-predicted hydrometeor control variables and associated background error covariance, bias estimation, and correction in radiance space, as well as the observation error statistics. While further work is needed to optimize the performance of WRF-EDAS, this study establishes the viability of developing a cloud-scale ensemble data assimilation system that has the potential to provide a useful vehicle for downscaling satellite precipitation information to finer scales suitable for hydrological applications.
Abstract
The mass concentration of fine particulate matter (PM2.5; diameters less than 2.5 μm) estimated from geostationary satellite aerosol optical depth (AOD) data can supplement the network of ground monitors with high temporal (hourly) resolution. Estimates of PM2.5 over the United States were derived from NOAA’s operational geostationary satellites’ Advanced Baseline Imager (ABI) AOD data using a geographically weighted regression with hourly and daily temporal resolution. Validation versus ground observations shows a mean bias of −21.4% and −15.3% for hourly and daily PM2.5 estimates, respectively, for concentrations ranging from 0 to 1000 μg m−3. Because satellites only observe AOD in the daytime, the relation between observed daytime PM2.5 and daily mean PM2.5 was evaluated using ground measurements; PM2.5 estimated from ABI AODs were also examined to study this relationship. The ground measurements show that daytime mean PM2.5 has good correlation (r > 0.8) with daily mean PM2.5 in most areas of the United States, but with pronounced differences in the western United States due to temporal variations caused by wildfire smoke; the relation between the daytime and daily PM2.5 estimated from the ABI AODs has a similar pattern. While daily or daytime estimated PM2.5 provides exposure information in the context of the PM2.5 standard (>35 μg m−3), the hourly estimates of PM2.5 used in nowcasting show promise for alerts and warnings of harmful air quality. The geostationary satellite based PM2.5 estimates inform the public of harmful air quality 10 times more than standard ground observations (1.8 versus 0.17 million people per hour).
Significance Statement
Fine particulate matter (PM2.5; diameters less than 2.5 μm) are generated from smoke, dust, and emissions from industrial, transportation, and other sectors. They are harmful to human health and even lead to premature mortality. Data from geostationary satellites can help estimate surface PM2.5 exposure by filling in gaps that are not covered by ground monitors. With this information, people can plan their outdoor activities accordingly. This study shows that availability of hourly PM2.5 observations covering the entire continental United States is more informative to the public about harmful exposure to pollution. On average, 1.8 million people per hour can be informed using satellite data compared to 0.17 million people per hour based on ground observations alone.
Abstract
The mass concentration of fine particulate matter (PM2.5; diameters less than 2.5 μm) estimated from geostationary satellite aerosol optical depth (AOD) data can supplement the network of ground monitors with high temporal (hourly) resolution. Estimates of PM2.5 over the United States were derived from NOAA’s operational geostationary satellites’ Advanced Baseline Imager (ABI) AOD data using a geographically weighted regression with hourly and daily temporal resolution. Validation versus ground observations shows a mean bias of −21.4% and −15.3% for hourly and daily PM2.5 estimates, respectively, for concentrations ranging from 0 to 1000 μg m−3. Because satellites only observe AOD in the daytime, the relation between observed daytime PM2.5 and daily mean PM2.5 was evaluated using ground measurements; PM2.5 estimated from ABI AODs were also examined to study this relationship. The ground measurements show that daytime mean PM2.5 has good correlation (r > 0.8) with daily mean PM2.5 in most areas of the United States, but with pronounced differences in the western United States due to temporal variations caused by wildfire smoke; the relation between the daytime and daily PM2.5 estimated from the ABI AODs has a similar pattern. While daily or daytime estimated PM2.5 provides exposure information in the context of the PM2.5 standard (>35 μg m−3), the hourly estimates of PM2.5 used in nowcasting show promise for alerts and warnings of harmful air quality. The geostationary satellite based PM2.5 estimates inform the public of harmful air quality 10 times more than standard ground observations (1.8 versus 0.17 million people per hour).
Significance Statement
Fine particulate matter (PM2.5; diameters less than 2.5 μm) are generated from smoke, dust, and emissions from industrial, transportation, and other sectors. They are harmful to human health and even lead to premature mortality. Data from geostationary satellites can help estimate surface PM2.5 exposure by filling in gaps that are not covered by ground monitors. With this information, people can plan their outdoor activities accordingly. This study shows that availability of hourly PM2.5 observations covering the entire continental United States is more informative to the public about harmful exposure to pollution. On average, 1.8 million people per hour can be informed using satellite data compared to 0.17 million people per hour based on ground observations alone.
Abstract
Based on 20-day control forecasts by the 9-km Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWF) for selected periods of summer and winter events, this study investigates global distributions of gravity wave momentum fluxes resolved by the highest-resolution-ever global operational numerical weather prediction model. Two supplementary datasets, including 18-km ECMWF IFS experiments and the 30-km ERA5, are included for comparison. In the stratosphere, there is a clear dominance of westward momentum fluxes over the winter extratropics with strong baroclinic instability, while eastward momentum fluxes are found in the summer tropics. However, meridional momentum fluxes, locally as important as the above zonal counterpart, show different behaviors of global distribution characteristics, with northward and southward momentum fluxes alternating with each other especially at lower altitudes. Both events illustrate conclusive evidence that stronger stratospheric fluxes are found in the ECMWF forecast with finer resolution, and that ERA5 datasets have the weakest signals in general, regardless of whether regridding is applied. In the troposphere, probability distributions of vertical motion perturbations are highly asymmetric with more strong positive signals especially over latitudes covering heavy rainfall, likely caused by convective forcing. With the aid of precipitation accumulation, a simple filtering method is proposed in an attempt to eliminate those tropospheric asymmetries by convective forcing, before calculating tropospheric wave-induced fluxes. Furthermore, this research demonstrates promising findings that the proposed filtering method could help in reducing the potential uncertainties with respect to estimating tropospheric wave-induced fluxes. Finally, absolute momentum flux distributions with proposed approaches are presented, for further assessment in the future.
Abstract
Based on 20-day control forecasts by the 9-km Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWF) for selected periods of summer and winter events, this study investigates global distributions of gravity wave momentum fluxes resolved by the highest-resolution-ever global operational numerical weather prediction model. Two supplementary datasets, including 18-km ECMWF IFS experiments and the 30-km ERA5, are included for comparison. In the stratosphere, there is a clear dominance of westward momentum fluxes over the winter extratropics with strong baroclinic instability, while eastward momentum fluxes are found in the summer tropics. However, meridional momentum fluxes, locally as important as the above zonal counterpart, show different behaviors of global distribution characteristics, with northward and southward momentum fluxes alternating with each other especially at lower altitudes. Both events illustrate conclusive evidence that stronger stratospheric fluxes are found in the ECMWF forecast with finer resolution, and that ERA5 datasets have the weakest signals in general, regardless of whether regridding is applied. In the troposphere, probability distributions of vertical motion perturbations are highly asymmetric with more strong positive signals especially over latitudes covering heavy rainfall, likely caused by convective forcing. With the aid of precipitation accumulation, a simple filtering method is proposed in an attempt to eliminate those tropospheric asymmetries by convective forcing, before calculating tropospheric wave-induced fluxes. Furthermore, this research demonstrates promising findings that the proposed filtering method could help in reducing the potential uncertainties with respect to estimating tropospheric wave-induced fluxes. Finally, absolute momentum flux distributions with proposed approaches are presented, for further assessment in the future.
Abstract
Evidence for the assumptions of the salt-advection feedback in box models is sought by studying the Atlantic meridional overturning circulation (AMOC) internal variability in the long preindustrial control runs of two Earth system models. The first assumption is that AMOC strength is proportional to the meridional density difference between the North Atlantic and the Southern Oceans. The model simulations support this assumption, with the caveat that nearly all the long time-scale variability occurs in the North Atlantic density. The second assumption is that the freshwater transport variability by the overturning at the Atlantic southern boundary is controlled by the strength of AMOC. Only one of the models shows some evidence that AMOC variability at 45°N leads variability in the overturning freshwater transport at the southern boundary by about 30 years, but the other model shows no such coherence. In contrast, in both models this freshwater transport variability is dominated by local salinity variations. The third assumption is that changes in the overturning freshwater transport at the Atlantic southern boundary perturb the north–south density difference, and thus feed back on AMOC strength in the north. No evidence for this assumption is found in either model at any time scale, although this does not rule out that the salt-advection feedback may be excited by a strong enough freshwater perturbation.
Abstract
Evidence for the assumptions of the salt-advection feedback in box models is sought by studying the Atlantic meridional overturning circulation (AMOC) internal variability in the long preindustrial control runs of two Earth system models. The first assumption is that AMOC strength is proportional to the meridional density difference between the North Atlantic and the Southern Oceans. The model simulations support this assumption, with the caveat that nearly all the long time-scale variability occurs in the North Atlantic density. The second assumption is that the freshwater transport variability by the overturning at the Atlantic southern boundary is controlled by the strength of AMOC. Only one of the models shows some evidence that AMOC variability at 45°N leads variability in the overturning freshwater transport at the southern boundary by about 30 years, but the other model shows no such coherence. In contrast, in both models this freshwater transport variability is dominated by local salinity variations. The third assumption is that changes in the overturning freshwater transport at the Atlantic southern boundary perturb the north–south density difference, and thus feed back on AMOC strength in the north. No evidence for this assumption is found in either model at any time scale, although this does not rule out that the salt-advection feedback may be excited by a strong enough freshwater perturbation.
Abstract
Satellite and gridded meteorological data can be used to estimate evaporation (E) from land surfaces using simple diagnostic models. Two satellite datasets indicate a positive trend (first time derivative) in global available energy from 1983 to 2006, suggesting that positive trends in evaporation may occur in “wet” regions where energy supply limits evaporation. However, decadal trends in evaporation estimated from water balances of 110 wet catchments
Abstract
Satellite and gridded meteorological data can be used to estimate evaporation (E) from land surfaces using simple diagnostic models. Two satellite datasets indicate a positive trend (first time derivative) in global available energy from 1983 to 2006, suggesting that positive trends in evaporation may occur in “wet” regions where energy supply limits evaporation. However, decadal trends in evaporation estimated from water balances of 110 wet catchments
Abstract
Precipitation and column water vapor data from 13 CMIP5 models and observational datasets are used to analyze atmospheric moisture recycling rate from 1988 to 2008. The comparisons between observations and model simulations suggest that most CMIP5 models capture two main characteristics of the recycling rate: 1) long-term decreasing trend of the global-average maritime recycling rate (atmospheric recycling rate over ocean within 60°S–60°N) and 2) dominant spatial patterns of the temporal variations of the recycling rate (i.e., increasing in the intertropical convergence zone and decreasing in subtropical regions). All models, except one, successfully simulate not only the long-term trend but also the interannual variability of column water vapor. The simulations of precipitation are relatively poor, especially over the relatively short time scales, which lead to the discrepancy of the recycling rate between observations and the CMIP5 models. Comparisons of spatial patterns also suggest that the CMIP5 models simulate column water vapor better than precipitation. The comparative studies indicate the scope of improvement in the simulations of precipitation, especially for the relatively short-time-scale variations, to better simulate the recycling rate of atmospheric moisture, an important indicator of climate change.
Abstract
Precipitation and column water vapor data from 13 CMIP5 models and observational datasets are used to analyze atmospheric moisture recycling rate from 1988 to 2008. The comparisons between observations and model simulations suggest that most CMIP5 models capture two main characteristics of the recycling rate: 1) long-term decreasing trend of the global-average maritime recycling rate (atmospheric recycling rate over ocean within 60°S–60°N) and 2) dominant spatial patterns of the temporal variations of the recycling rate (i.e., increasing in the intertropical convergence zone and decreasing in subtropical regions). All models, except one, successfully simulate not only the long-term trend but also the interannual variability of column water vapor. The simulations of precipitation are relatively poor, especially over the relatively short time scales, which lead to the discrepancy of the recycling rate between observations and the CMIP5 models. Comparisons of spatial patterns also suggest that the CMIP5 models simulate column water vapor better than precipitation. The comparative studies indicate the scope of improvement in the simulations of precipitation, especially for the relatively short-time-scale variations, to better simulate the recycling rate of atmospheric moisture, an important indicator of climate change.
Before and during the 2008 Beijing Olympics from June to September, ground-based and satellite monitoring were carried out over Beijing and its vicinity (BIV) in a campaign to quantify the outcomes of various emission control measures. These include hourly surface PM10 and PM2.5 and their fraction of black carbon (BC), organics, nitrate, sulfate, ammonium, and daily aerosol optical depth (AOD), together with hourly reactive gases, surface ozone, and daily columnar NO2 from satellite. The analyses, excluding the estimates from weather contributions, demonstrate that after the control measures, including banning ~300,000 “yellow-tag” vehicles from roads, the even–odd turn of motor vehicles on the roads, and emission reduction aiming at coal combustion, were implemented, air quality in Beijing improved substantially. The levels of NO, NO2, NOx, CO, SO2, BC, organics, and nitrate dropped by about 30%–60% and the ozone moderately increased by ~40% while the sulfate and ammonium exhibited different patterns during various control stages. Weather conditions have a great impact on the summertime secondary aerosol (~80% of total PM) and O3 formations over BIV. During the Olympic Game period, various atmospheric components decreased dramatically at Beijing compared to the same period in the previous years. This decrease was related not only to the implementation of rigorous control measures, but also to the favorable weather processes. The subtropical high was located to the south so that Beijing's weather was dominated by the interaction between a frequently eastward shifting trough in the westerlies and a cold continental high with clear to cloudy days or showery weather.
Before and during the 2008 Beijing Olympics from June to September, ground-based and satellite monitoring were carried out over Beijing and its vicinity (BIV) in a campaign to quantify the outcomes of various emission control measures. These include hourly surface PM10 and PM2.5 and their fraction of black carbon (BC), organics, nitrate, sulfate, ammonium, and daily aerosol optical depth (AOD), together with hourly reactive gases, surface ozone, and daily columnar NO2 from satellite. The analyses, excluding the estimates from weather contributions, demonstrate that after the control measures, including banning ~300,000 “yellow-tag” vehicles from roads, the even–odd turn of motor vehicles on the roads, and emission reduction aiming at coal combustion, were implemented, air quality in Beijing improved substantially. The levels of NO, NO2, NOx, CO, SO2, BC, organics, and nitrate dropped by about 30%–60% and the ozone moderately increased by ~40% while the sulfate and ammonium exhibited different patterns during various control stages. Weather conditions have a great impact on the summertime secondary aerosol (~80% of total PM) and O3 formations over BIV. During the Olympic Game period, various atmospheric components decreased dramatically at Beijing compared to the same period in the previous years. This decrease was related not only to the implementation of rigorous control measures, but also to the favorable weather processes. The subtropical high was located to the south so that Beijing's weather was dominated by the interaction between a frequently eastward shifting trough in the westerlies and a cold continental high with clear to cloudy days or showery weather.