Search Results

You are looking at 51 - 60 of 84 items for

  • Author or Editor: Paul Dirmeyer x
  • Refine by Access: All Content x
Clear All Modify Search
Vasubandhu Misra
,
Paul A. Dirmeyer
, and
Ben P. Kirtman

Abstract

In this paper multiple atmospheric global circulation model (AGCM) integrations at T42 spectral truncation and prescribed sea surface temperature were used to drive regional spectral model (RSM) simulations at 80-km resolution for the austral summer season (January–February–March). Relative to the AGCM, the RSM improves the ensemble mean simulation of precipitation and the lower- and upper-level tropospheric circulation over both tropical and subtropical South America and the neighboring ocean basins. It is also seen that the RSM exacerbates the dry bias over the northern tip of South America and the Nordeste region, and perpetuates the erroneous split intertropical convergence zone (ITCZ) over both the Pacific and Atlantic Ocean basins from the AGCM. The RSM at 80-km horizontal resolution is able to reasonably resolve the Altiplano plateau. This led to an improvement in the mean precipitation over the plateau. The improved resolution orography in the RSM did not substantially change the predictability of the precipitation, surface fluxes, or upper- and lower-level winds in the vicinity of the Andes Mountains from the AGCM. In spite of identical convective and land surface parameterization schemes, the diagnostic quantities, such as precipitation and surface fluxes, show significant differences in the intramodel variability over oceans and certain parts of the Amazon River basin (ARB). However, the prognostic variables of the models exhibit relatively similar model noise structures and magnitude. This suggests that the model physics are in large part responsible for the divergence of the solutions in the two models. However, the surface temperature and fluxes from the land surface scheme of the model [Simplified Simple Biosphere scheme (SSiB)] display comparable intramodel variability, except over certain parts of ARB in the two models. This suggests a certain resilience of predictability in SSiB (over the chosen domain of study) to variations in horizontal resolution. It is seen in this study that the summer precipitation over tropical and subtropical South America is highly unpredictable in both models.

Full access
Paul A. Dirmeyer
,
Michael J. Fennessy
, and
L. Marx

Abstract

Ensemble integrations of three general circulation models (Center for Ocean–Land–Atmosphere Studies, NCAR, and NCEP) have been performed over five different boreal summer seasons (June through September of 1986–88 and 1993–94) with prescribed observed sea surface temperature to assess the predictability of seasonal climate during the boreal summer. Beyond some inconsistent initialization of soil wetness among the models, there is no land surface contribution to predictability that can be assessed. The models show a rapid degradation of skill in global terrestrial surface temperature after the first month, and no skill in precipitation over land. Potential predictability is assessed by examining in tandem the models' skill as measured by their anomaly correlation coefficients, and the models' signal-to-noise ratio (essentially interannual versus intraensemble variance) as a measure of confidence in the results. Collocation of skill in anomaly simulation and a robust signal is a strong indicator of potential predictability. Predictability of interannual climate variations is found to be low outside the deep Tropics, and nil over land. With only SST as a driving boundary condition, the poor performance of these models during summer may indicate that one must turn to the land surface in order to harvest potential predictability.

Full access
Paul A. Dirmeyer
,
Yan Jin
,
Bohar Singh
, and
Xiaoqin Yan

Abstract

Long-term changes in land–atmosphere interactions during spring and summer are examined over North America. A suite of models from phase 5 of the Coupled Model Intercomparison Project simulating preindustrial, historical, and severe future climate change scenarios are examined for changes in soil moisture, surface fluxes, atmospheric boundary layer characteristics, and metrics of land–atmosphere coupling.

Simulations of changes from preindustrial to modern conditions show warming brings stronger surface fluxes at high latitudes, while subtropical regions of North America respond with drier conditions. There is a clear anthropogenic aerosol response in midlatitudes that reduces surface radiation and heat fluxes, leading to shallower boundary layers and lower cloud base. Over the Great Plains, the signal does not reflect a purely radiatively forced response, showing evidence that the expansion of agriculture may have offset the aerosol impacts on the surface energy and water cycle.

Future changes show soils are projected to dry across North America, even though precipitation increases north of a line that retreats poleward from spring to summer. Latent heat flux also has a north–south dipole of change, increasing north and decreasing south of a line that also moves northward with the changing season. Metrics of land–atmosphere feedback increase over most of the continent but are strongest where latent heat flux increases in the same location and season where precipitation decreases. Combined with broadly elevated cloud bases and deeper boundary layers, land–atmosphere interactions are projected to become more important in the future with possible consequences for seasonal climate prediction.

Full access
Chul-Su Shin
,
Paul A. Dirmeyer
,
Bohua Huang
,
Subhadeep Halder
, and
Arun Kumar

Abstract

The NCEP CFSv2 ensemble reforecasts initialized with different land surface analyses for the period of 1979–2010 have been conducted to assess the effect of uncertainty in land initial states on surface air temperature prediction. The two observation-based land initial states are adapted from the NCEP CFS Reanalysis (CFSR) and the NASA GLDAS-2 analysis; atmosphere, ocean, and ice initial states are identical for both reforecasts. This identical-twin experiment confirms that the prediction skill of surface air temperature is sensitive to the uncertainty of land initial states, especially in soil moisture and snow cover. There is no distinct characteristic that determines which set of the reforecasts performs better. Rather, the better performer varies with the lead week and location for each season. Estimates of soil moisture between the two land initial states are significantly different with an apparent north–south contrast for almost all seasons, causing predicted surface air temperature discrepancies between the two sets of reforecasts, particularly in regions where the magnitude of initial soil moisture difference lies in the top quintile. In boreal spring, inconsistency of snow cover between the two land initial states also plays a critical role in enhancing the discrepancy of predicted surface air temperature from week 5 to week 8. Our results suggest that a reduction of the uncertainty in land surface properties among the current land surface analyses will be beneficial to improving the prediction skill of surface air temperature on subseasonal time scales. Implications of a multiple land surface analysis ensemble are also discussed.

Full access
Yongkang Xue
,
Heidi G. Bastable
,
Paul A. Dirmeyer
, and
Piers J. Sellers

Abstract

The simplified Simple Biosphere model (SSiB) has been validated using observed meteorological, turbulent flux, and vegetation property data from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) over a forest clearing site. The results show that SSiB is able to simulate the observed fluxes realistically. The differences between the simulated and observed latent and sensible heat fluxes are less than 10 W m−2. Compared to previous deforestation experiments, the new vegetation dataset produces significantly different latent heat fluxes and surface temperatures in off-line and general circulation model (GCM) simulation. Using the new dataset the GCM simulated surface temperature is about 2 K higher, and the simulated latent heat flux is about 25 W m−2 lower than that generated using a previous dataset. These differences can be expected to result in substantially different responses in rainfall and atmosphere circulation. The parameters that are most significant in producing such large differences are leaf area index and soil properties. This study again demonstrates that to realistically assess the climatic impact of land surface degradation a realistic specification of the land surface conditions within GCMs is crucial.

Full access
Li Zhang
,
Paul A. Dirmeyer
,
Jiangfeng Wei
,
Zhichang Guo
, and
Cheng-Hsuan Lu

Abstract

The operational coupled land–atmosphere forecast model from the National Centers for Environmental Prediction (NCEP) is evaluated for the strength and characteristics of its coupling in the water cycle between land and atmosphere. Following the protocols of the Global Land–Atmosphere Coupling Experiment (GLACE) it is found that the Global Forecast System (GFS) atmospheric model coupled to the Noah land surface model exhibits extraordinarily weak land–atmosphere coupling, much as its predecessor, the GFS–Oregon State University (OSU) coupled system. The coupling strength is evaluated by the ability of subsurface soil wetness to affect locally the time series of precipitation. The surface fluxes in Noah are also found to be rather insensitive to subsurface soil wetness. Comparison to another atmospheric model coupled to Noah as well as a different land surface model show that Noah is responsible for some of the lack of sensitivity, primarily because its thick (10 cm) surface layer dominates the variability in surface latent heat fluxes. Noah is found to be as responsive as other land surface models to surface soil wetness and temperature variations, suggesting the design of the GLACE sensitivity experiment (based only on subsurface soil wetness) handicapped the Noah model. Additional experiments, in which the parameterization of evapotranspiration is altered, as well as experiments where surface soil wetness is also constrained, isolate the GFS atmospheric model as the principal source of the weak sensitivity of precipitation to land surface states.

Full access
Sanjiv Kumar
,
James Kinter III
,
Paul A. Dirmeyer
,
Zaitao Pan
, and
Jennifer Adams

Abstract

The ability of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models to simulate the twentieth-century “warming hole” over North America is explored, along with the warming hole’s relationship with natural climate variability. Twenty-first-century warming hole projections are also examined for two future emission scenarios, the 8.5 and 4.5 W m−2 representative concentration pathways (RCP8.5 and RCP4.5). Simulations from 22 CMIP5 climate models were analyzed, including all their ensemble members, for a total of 192 climate realizations. A nonparametric trend detection method was employed, and an alternative perspective emphasizing trend variability. Observations show multidecadal variability in the sign and magnitude of the trend, where the twentieth-century temperature trend over the eastern United States appears to be associated with low-frequency (multidecadal) variability in the North Atlantic temperatures. Most CMIP5 climate models simulate significantly lower “relative power” in the North Atlantic multidecadal oscillations than observed. Models that have relatively higher skill in simulating the North Atlantic multidecadal oscillation also are more likely to reproduce the warming hole. It was also found that the trend variability envelope simulated by multiple CMIP5 climate models brackets the observed warming hole. Based on the multimodel analysis, it is found that in the twenty-first-century climate simulations the presence or absence of the warming hole depends on future emission scenarios; the RCP8.5 scenario indicates a disappearance of the warming hole, whereas the RCP4.5 scenario shows some chance (10%–20%) of the warming hole’s reappearance in the latter half of the twenty-first century, consistent with CO2 stabilization.

Full access
Randal D. Koster
,
Zhichang Guo
,
Rongqian Yang
,
Paul A. Dirmeyer
,
Kenneth Mitchell
, and
Michael J. Puma

Abstract

The soil moisture state simulated by a land surface model is a highly model-dependent quantity, meaning that the direct transfer of one model’s soil moisture into another can lead to a fundamental, and potentially detrimental, inconsistency. This is first illustrated with two recent examples, one from the National Centers for Environmental Prediction (NCEP) involving seasonal precipitation forecasting and another from the realm of ecological modeling. The issue is then further addressed through a quantitative analysis of soil moisture contents produced as part of a global offline simulation experiment in which a number of land surface models were driven with the same atmospheric forcing fields. These latter comparisons clearly demonstrate, on a global scale, the degree to which model-simulated soil moisture variables differ from each other and that these differences extend beyond those associated with model-specific layer thicknesses or soil texture. The offline comparisons also show, however, that once the climatological statistics of each model’s soil moisture variable are accounted for (here, through a simple scaling using the first two moments), the different land models tend to produce very similar information on temporal soil moisture variability in most parts of the world. This common information can perhaps be used as the basis for successful mappings between the soil moisture variables in different land models.

Full access
Jiangfeng Wei
,
Paul A. Dirmeyer
,
Dominik Wisser
,
Michael G. Bosilovich
, and
David M. Mocko

Abstract

Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

Full access
Paul A. Dirmeyer
,
Jiangfeng Wei
,
Michael G. Bosilovich
, and
David M. Mocko

Abstract

A quasi-isentropic, back-trajectory scheme is applied to output from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and a land-only replay with corrected precipitation to estimate surface evaporative sources of moisture supplying precipitation over every ice-free land location for the period 1979–2005. The evaporative source patterns for any location and time period are effectively two-dimensional probability distributions. As such, the evaporative sources for extreme situations like droughts or wet intervals can be compared to the corresponding climatological distributions using the method of relative entropy. Significant differences are found to be common and widespread for droughts, but not wet periods, when monthly data are examined. At pentad temporal resolution, which is more able to isolate floods and situations of atmospheric rivers, values of relative entropy over North America are typically 50%–400% larger than at monthly time scales. Significant differences suggest that moisture transport may be a key factor in precipitation extremes. Where evaporative sources do not change significantly, it implies other local causes may underlie the extreme events.

Full access