Search Results

You are looking at 51 - 59 of 59 items for

  • Author or Editor: Rong Zhang x
  • Refine by Access: All Content x
Clear All Modify Search
Xiaosong Yang
,
Anthony Rosati
,
Shaoqing Zhang
,
Thomas L. Delworth
,
Rich G. Gudgel
,
Rong Zhang
,
Gabriel Vecchi
,
Whit Anderson
,
You-Soon Chang
,
Timothy DelSole
,
Keith Dixon
,
Rym Msadek
,
William F. Stern
,
Andrew Wittenberg
, and
Fanrong Zeng

Abstract

The decadal predictability of sea surface temperature (SST) and 2-m air temperature (T2m) in the Geophysical Fluid Dynamics Laboratory (GFDL) decadal hindcasts, which are part of the Fifth Coupled Model Intercomparison Project experiments, has been investigated using an average predictability time (APT) analysis. Comparison of retrospective forecasts initialized using the GFDL Ensemble Coupled Data Assimilation system with uninitialized historical forcing simulations using the same model allows identification of the internal multidecadal pattern (IMP) for SST and T2m. The IMP of SST is characterized by an interhemisphere dipole, with warm anomalies centered in the North Atlantic subpolar gyre region and North Pacific subpolar gyre region, and cold anomalies centered in the Antarctic Circumpolar Current region. The IMP of T2m is characterized by a general bipolar seesaw, with warm anomalies centered in Greenland and cold anomalies centered in Antarctica. The retrospective prediction skill of the initialized system, verified against independent observational datasets, indicates that the IMP of SST may be predictable up to 4 (10) yr lead time at 95% (90%) significance level, and the IMP of T2m may be predictable up to 2 (10) yr at the 95% (90%) significance level. The initialization of multidecadal variations of northward oceanic heat transport in the North Atlantic significantly improves the predictive skill of the IMP. The dominant roles of oceanic internal dynamics in decadal prediction are further elucidated by fixed-forcing experiments in which radiative forcing is returned abruptly to 1961 values. These results point toward the possibility of meaningful decadal climate outlooks using dynamical coupled models if they are appropriately initialized from a sustained climate observing system.

Full access
Rong Zhang
,
Thomas L. Delworth
,
Rowan Sutton
,
Daniel L. R. Hodson
,
Keith W. Dixon
,
Isaac M. Held
,
Yochanan Kushnir
,
John Marshall
,
Yi Ming
,
Rym Msadek
,
Jon Robson
,
Anthony J. Rosati
,
MingFang Ting
, and
Gabriel A. Vecchi

Abstract

Identifying the prime drivers of the twentieth-century multidecadal variability in the Atlantic Ocean is crucial for predicting how the Atlantic will evolve in the coming decades and the resulting broad impacts on weather and precipitation patterns around the globe. Recently, Booth et al. showed that the Hadley Centre Global Environmental Model, version 2, Earth system configuration (HadGEM2-ES) closely reproduces the observed multidecadal variations of area-averaged North Atlantic sea surface temperature in the twentieth century. The multidecadal variations simulated in HadGEM2-ES are primarily driven by aerosol indirect effects that modify net surface shortwave radiation. On the basis of these results, Booth et al. concluded that aerosols are a prime driver of twentieth-century North Atlantic climate variability. However, here it is shown that there are major discrepancies between the HadGEM2-ES simulations and observations in the North Atlantic upper-ocean heat content, in the spatial pattern of multidecadal SST changes within and outside the North Atlantic, and in the subpolar North Atlantic sea surface salinity. These discrepancies may be strongly influenced by, and indeed in large part caused by, aerosol effects. It is also shown that the aerosol effects simulated in HadGEM2-ES cannot account for the observed anticorrelation between detrended multidecadal surface and subsurface temperature variations in the tropical North Atlantic. These discrepancies cast considerable doubt on the claim that aerosol forcing drives the bulk of this multidecadal variability.

Full access
Stephen M. Griffies
,
Michael Winton
,
Whit G. Anderson
,
Rusty Benson
,
Thomas L. Delworth
,
Carolina O. Dufour
,
John P. Dunne
,
Paul Goddard
,
Adele K. Morrison
,
Anthony Rosati
,
Andrew T. Wittenberg
,
Jianjun Yin
, and
Rong Zhang

Abstract

The authors characterize impacts on heat in the ocean climate system from transient ocean mesoscale eddies. Their tool is a suite of centennial-scale 1990 radiatively forced numerical climate simulations from three GFDL coupled models comprising the Climate Model, version 2.0–Ocean (CM2-O), model suite. CM2-O models differ in their ocean resolution: CM2.6 uses a 0.1° ocean grid, CM2.5 uses an intermediate grid with 0.25° spacing, and CM2-1deg uses a nominal 1.0° grid.

Analysis of the ocean heat budget reveals that mesoscale eddies act to transport heat upward in a manner that partially compensates (or offsets) for the downward heat transport from the time-mean currents. Stronger vertical eddy heat transport in CM2.6 relative to CM2.5 accounts for the significantly smaller temperature drift in CM2.6. The mesoscale eddy parameterization used in CM2-1deg also imparts an upward heat transport, yet it differs systematically from that found in CM2.6. This analysis points to the fundamental role that ocean mesoscale features play in transient ocean heat uptake. In general, the more accurate simulation found in CM2.6 provides an argument for either including a rich representation of the ocean mesoscale in model simulations of the mean and transient climate or for employing parameterizations that faithfully reflect the role of eddies in both lateral and vertical heat transport.

Full access
Thomas L. Delworth
,
Anthony Rosati
,
Whit Anderson
,
Alistair J. Adcroft
,
V. Balaji
,
Rusty Benson
,
Keith Dixon
,
Stephen M. Griffies
,
Hyun-Chul Lee
,
Ronald C. Pacanowski
,
Gabriel A. Vecchi
,
Andrew T. Wittenberg
,
Fanrong Zeng
, and
Rong Zhang

Abstract

The authors present results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes.

Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO2 increases at 1% yr−1 until doubling after 70 yr.

Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an improved simulation of ENSO. Regional precipitation features are much improved. The Indian monsoon and Amazonian rainfall are also substantially more realistic in CM2.5.

The response of CM2.5 to a doubling of atmospheric CO2 has many features in common with CM2.1, with some notable differences. For example, rainfall changes over the Mediterranean appear to be tightly linked to topography in CM2.5, in contrast to CM2.1 where the response is more spatially homogeneous. In addition, in CM2.5 the near-surface ocean warms substantially in the high latitudes of the Southern Ocean, in contrast to simulations using CM2.1.

Full access
Bin Wang
,
Michela Biasutti
,
Michael P. Byrne
,
Christopher Castro
,
Chih-Pei Chang
,
Kerry Cook
,
Rong Fu
,
Alice M. Grimm
,
Kyung-Ja Ha
,
Harry Hendon
,
Akio Kitoh
,
R. Krishnan
,
June-Yi Lee
,
Jianping Li
,
Jian Liu
,
Aurel Moise
,
Salvatore Pascale
,
M. K. Roxy
,
Anji Seth
,
Chung-Hsiung Sui
,
Andrew Turner
,
Song Yang
,
Kyung-Sook Yun
,
Lixia Zhang
, and
Tianjun Zhou
Full access
Bin Wang
,
Michela Biasutti
,
Michael P. Byrne
,
Christopher Castro
,
Chih-Pei Chang
,
Kerry Cook
,
Rong Fu
,
Alice M. Grimm
,
Kyung-Ja Ha
,
Harry Hendon
,
Akio Kitoh
,
R. Krishnan
,
June-Yi Lee
,
Jianping Li
,
Jian Liu
,
Aurel Moise
,
Salvatore Pascale
,
M. K. Roxy
,
Anji Seth
,
Chung-Hsiung Sui
,
Andrew Turner
,
Song Yang
,
Kyung-Sook Yun
,
Lixia Zhang
, and
Tianjun Zhou

Abstract

Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.

Full access
Justin Sheffield
,
Suzana J. Camargo
,
Rong Fu
,
Qi Hu
,
Xianan Jiang
,
Nathaniel Johnson
,
Kristopher B. Karnauskas
,
Seon Tae Kim
,
Jim Kinter
,
Sanjiv Kumar
,
Baird Langenbrunner
,
Eric Maloney
,
Annarita Mariotti
,
Joyce E. Meyerson
,
J. David Neelin
,
Sumant Nigam
,
Zaitao Pan
,
Alfredo Ruiz-Barradas
,
Richard Seager
,
Yolande L. Serra
,
De-Zheng Sun
,
Chunzai Wang
,
Shang-Ping Xie
,
Jin-Yi Yu
,
Tao Zhang
, and
Ming Zhao

Abstract

This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.

Full access
Anand Gnanadesikan
,
Keith W. Dixon
,
Stephen M. Griffies
,
V. Balaji
,
Marcelo Barreiro
,
J. Anthony Beesley
,
William F. Cooke
,
Thomas L. Delworth
,
Rudiger Gerdes
,
Matthew J. Harrison
,
Isaac M. Held
,
William J. Hurlin
,
Hyun-Chul Lee
,
Zhi Liang
,
Giang Nong
,
Ronald C. Pacanowski
,
Anthony Rosati
,
Joellen Russell
,
Bonita L. Samuels
,
Qian Song
,
Michael J. Spelman
,
Ronald J. Stouffer
,
Colm O. Sweeney
,
Gabriel Vecchi
,
Michael Winton
,
Andrew T. Wittenberg
,
Fanrong Zeng
,
Rong Zhang
, and
John P. Dunne

Abstract

The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous generations of GFDL climate models. This paper summarizes the new physical features of the models and examines the simulations that they produce. Of the two new coupled climate model versions 2.1 (CM2.1) and 2.0 (CM2.0), the CM2.1 model represents a major improvement over CM2.0 in most of the major oceanic features examined, with strikingly lower drifts in hydrographic fields such as temperature and salinity, more realistic ventilation of the deep ocean, and currents that are closer to their observed values. Regional analysis of the differences between the models highlights the importance of wind stress in determining the circulation, particularly in the Southern Ocean. At present, major errors in both models are associated with Northern Hemisphere Mode Waters and outflows from overflows, particularly the Mediterranean Sea and Red Sea.

Full access
Thomas L. Delworth
,
Anthony J. Broccoli
,
Anthony Rosati
,
Ronald J. Stouffer
,
V. Balaji
,
John A. Beesley
,
William F. Cooke
,
Keith W. Dixon
,
John Dunne
,
K. A. Dunne
,
Jeffrey W. Durachta
,
Kirsten L. Findell
,
Paul Ginoux
,
Anand Gnanadesikan
,
C. T. Gordon
,
Stephen M. Griffies
,
Rich Gudgel
,
Matthew J. Harrison
,
Isaac M. Held
,
Richard S. Hemler
,
Larry W. Horowitz
,
Stephen A. Klein
,
Thomas R. Knutson
,
Paul J. Kushner
,
Amy R. Langenhorst
,
Hyun-Chul Lee
,
Shian-Jiann Lin
,
Jian Lu
,
Sergey L. Malyshev
,
P. C. D. Milly
,
V. Ramaswamy
,
Joellen Russell
,
M. Daniel Schwarzkopf
,
Elena Shevliakova
,
Joseph J. Sirutis
,
Michael J. Spelman
,
William F. Stern
,
Michael Winton
,
Andrew T. Wittenberg
,
Bruce Wyman
,
Fanrong Zeng
, and
Rong Zhang

Abstract

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.

Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.

The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic.

Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).

Full access