Search Results

You are looking at 51 - 60 of 80 items for

  • Author or Editor: S. Chang x
  • Refine by Access: All Content x
Clear All Modify Search
J. R. Wang
,
S. H. Melfi
,
P. Racette
,
D. N. Whitemen
,
L. A. Chang
,
R. A. Ferrare
,
K. D. Evans
, and
F. J. Schmidlin

Abstract

Simultaneous measurements of atmospheric water vapor were made by the Millimeter-wave Imaging Radiometer (MIR), Raman lidar, and rawinsondes. Two types of rawinsonde sensor packages (AIR and Vaisala) were carried by the same balloon. The measured water vapor profiles from Raman lidar, and the Vaisala and AIR sondes were used in the radiative transfer calculations. The calculated brightness temperatures were compared with those measured from the MIR at all six frequencies (89, 150, 183.3 ± 1, 183.3 ±3, 183.3 ±7, and 220 GHz). The results show that the MIR-measured brightness temperatures agree well (within ±K) with those calculated from the Raman lidar and Vaisala measurements. The brightness temperatures calculated from the AIR sondes differ from the MIR measurements by as much as 10 K, which can be attributed to low sensitivity of the AIR sondes at relative humidity less than 20%. Both calculated and the MIR-measured brightness temperatures were also used to retrieve water vapor profiles. These retrieved profiles were compared with those measured by the Raman lidar and rawinsondes. The results of these comparisons suggest that the MIR can measure the brightness of a target to an accuracy of at most ±K and is capable of retrieving useful water vapor profiles.

Full access
Yansen Wang
,
Cheryl L. Klipp
,
Dennis M. Garvey
,
David A. Ligon
,
Chatt C. Williamson
,
Sam S. Chang
,
Rob K. Newsom
, and
Ronald Calhoun

Abstract

Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25–100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%–15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

Full access
Steven P. Oncley
,
Carl A. Friehe
,
John C. Larue
,
Joost A. Businger
,
Eric C. Itsweire
, and
Sam S. Chang

Abstract

An atmospheric surface-layer experiment over a nearly uniform plowed field was performed to determine the constants in the flux-profile similarity formulas, particularly the von Kármán constant. New instruments were constructed to minimize flow distortion effects on the turbulence measurements and to provide high-resolution gradient measurements. In addition, a hot-wire anemometer directly measured the turbulent kinetic energy dissipation rate.

An average value of the von Kármán constant of 0.365 ± 0.015 was obtained from 91 runs (31 h) in near-neutral stability conditions. However, four near-neutral runs when snow covered the ground gave an average value of 0.42. This result suggests that the von Kármán constant depends on the roughness Reynolds number, which may resolve some of the differences in previous determinations over different surfaces. The one-dimensional Kolmogorov inertial subrange constant was found to have a value of 0.54 ± 0.03, slightly larger than previous results.

The flux-profile relations for momentum and temperature variance were evaluated, and humidity variance data behaved similarly to temperature. Dissipation of turbulent kinetic energy was found to be less than production under near-neutral conditions, which suggests that turbulent or pressure transport may be significant.

Full access
Jie Peng
,
C. S. B. Grimmond
,
Xinshu Fu
,
Yuanyong Chang
,
Guangliang Zhang
,
Jibing Guo
,
Chenyang Tang
,
Jie Gao
,
Xiaodong Xu
, and
Jianguo Tan

Abstract

To investigate the boundary layer dynamics of the coastal megacity Shanghai, China, backscatter data measured by a Vaisala CL51 ceilometer are analyzed with a modified ideal curve fitting algorithm. The boundary layer height z i retrieved by this method and from radiosondes compare reasonably overall. Analyses of mobile and stationary ceilometer data provide spatial and temporal characteristics of Shanghai’s boundary layer height. The consistency between when the ceilometer is moving and stationary highlights the potential of mobile observations of transects across cities. An analysis of 16 months of z i measured at the Fengxian site in Shanghai reveals that the diurnal variation of z i in the four seasons follows the expected pattern; for all seasons z i starts to increase at sunrise, reflecting the influence of solar radiation. However, the boundary layer height is generally higher in autumn and winter than in summer and spring (mean hourly averaged z i for days with low cloud fraction at 1100–1200 local time are 900, 654, 934, and 768 m for spring, summer, autumn, and winter, respectively). This is attributed to seasonal differences in the dominant meteorological conditions, including the effects of a sea breeze at the near-coastal Fengxian site. Given the success of the retrieval method, other ceilometers installed across Shanghai are now being analyzed to understand more about the spatial dynamics of z i and to investigate in more detail the effects of prevailing mesoscale circulations and their seasonal dynamics.

Full access
Hyacinth C. Nnamchi
,
Jianping Li
,
Fred Kucharski
,
In-Sik Kang
,
Noel S. Keenlyside
,
Ping Chang
, and
Riccardo Farneti

Abstract

Equatorial Atlantic variability is dominated by the Atlantic Niño peaking during the boreal summer. Studies have shown robust links of the Atlantic Niño to fluctuations of the St. Helena subtropical anticyclone and Benguela Niño events. Furthermore, the occurrence of opposite sea surface temperature (SST) anomalies in the eastern equatorial and southwestern extratropical South Atlantic Ocean (SAO), also peaking in boreal summer, has recently been identified and termed the SAO dipole (SAOD). However, the extent to which and how the Atlantic Niño and SAOD are related remain unclear. Here, an analysis of historical observations reveals the Atlantic Niño as a possible intrinsic equatorial arm of the SAOD. Specifically, the observed sporadic equatorial warming characteristic of the Atlantic Niño (~0.4 K) is consistently linked to southwestern cooling (~−0.4 K) of the Atlantic Ocean during the boreal summer. Heat budget calculations show that the SAOD is largely driven by the surface net heat flux anomalies while ocean dynamics may be of secondary importance. Perturbations of the St. Helena anticyclone appear to be the dominant mechanism triggering the surface heat flux anomalies. A weakening of the anticyclone will tend to weaken the prevailing northeasterlies and enhance evaporative cooling over the southwestern Atlantic Ocean. In the equatorial region, the southeast trade winds weaken, thereby suppressing evaporation and leading to net surface warming. Thus, it is hypothesized that the wind–evaporation–SST feedback may be responsible for the growth of the SAOD events linking southern extratropics and equatorial Atlantic variability via surface net heat flux anomalies.

Full access
Jianguo Tan
,
Limin Yang
,
C. S. B. Grimmond
,
Jianping Shi
,
Wen Gu
,
Yuanyong Chang
,
Ping Hu
,
Juan Sun
,
Xiangyu Ao
, and
Zhihui Han

Abstract

Observations of atmospheric conditions and processes in cities are fundamental to understanding the interactions between the urban surface and weather/climate, improving the performance of urban weather, air quality, and climate models, and providing key information for city end users (e.g., decision makers, stakeholders, public). In this paper, Shanghai’s Urban Integrated Meteorological Observation Network (SUIMON) and some examples of intended applications are introduced. Its characteristics include being multipurpose (e.g., forecast, research, service), multifunction (e.g., high-impact weather, city climate, special end users), multiscale (e.g., macro/meso, urban, neighborhood, street canyon), multivariable (e.g., thermal, dynamic, chemical, biometeorological, ecological), and multiplatform (e.g., radar, wind profiler, ground based, satellite based, in situ observation/sampling). Underlying SUIMON is a data management system to facilitate exchange of data and information. The overall aim of the network is to improve coordination strategies and instruments, to identify data gaps based on science- and user-driven requirements, and to intelligently combine observations from a variety of platforms by using a data assimilation system that is tuned to produce the best estimate of the current state of the urban atmosphere.

Full access
W. J. Teague
,
G. A. Jacobs
,
H. T. Perkins
,
J. W. Book
,
K-I. Chang
, and
M-S. Suk

Abstract

High resolution, continuous current measurements made in the Korea/Tsushima Strait between May 1999 and March 2000 are used to examine current variations having time periods longer than 2 days. Twelve bottom-mounted acoustic Doppler current profilers provide velocity profiles along two sections: one section at the strait entrance southwest of Tsushima Island and the second section at the strait exit northeast of Tsushima Island. Additional measurements are provided by single moorings located between Korea and Tsushima Island and just north of Cheju Island in Cheju Strait. The two sections contain markedly different mean flow regimes. A high velocity current core exists at the southwestern section along the western slope of the strait for the entire recording period. The flow directly downstream of Tsushima Island contains large variability, and the flow is disrupted to such an extent by the island that a countercurrent commonly exists in the lee of the island. The northeastern section is marked by strong spatial variability and a large seasonal signal but in the mean consists of two localized intense flows concentrated near the Korea and Japan coasts. Peak nontidal currents exceed 70 cm s−1 while total currents exceed 120 cm s−1. The estimated mean transport calculated from the southwest line is 2.7 Sv (Sv ≡ 106 m3 s−1). EOF analyses indicate total transport variations in summer are due mainly to transport variations near the Korea coast. In winter, contributions to total transport variations are more uniformly distributed across the strait.

Full access
R. J. Small
,
J. Kurian
,
P. Chang
,
G. Xu
,
H. Tsujino
,
S. Yeager
,
G. Danabasoglu
,
W. M. Kim
,
A. Altuntas
, and
F. Castruccio

Abstract

In this paper we summarize improvements in climate model simulation of eastern boundary upwelling systems (EBUS) when changing the forcing dataset from the Coordinated Ocean-Ice Reference Experiments (CORE; ∼2° winds) to the higher-resolution Japanese 55-year Atmospheric Reanalysis for driving ocean–sea ice models (JRA55-do, ∼0.5°) and also due to refining ocean grid spacing from 1° to 0.1°. The focus is on sea surface temperature (SST), a key variable for climate studies, and which is typically too warm in climate model representation of EBUS. The change in forcing leads to a better-defined atmospheric low-level coastal jet, leading to more equatorward ocean flow and coastal upwelling, both in turn acting to reduce SST over the upwelling regions off the west coast of North America, Peru, and Chile. The refinement of ocean resolution then leads to narrower and stronger alongshore ocean flow and coastal upwelling, and the emergence of strong across-shore temperature gradients not seen with the coarse ocean model. Off northwest Africa the SST bias mainly improves with ocean resolution but not with forcing, while in the Benguela, JRA55-do with high-resolution ocean leads to lower SST but a substantial bias relative to observations remains. Reasons for the Benguela bias are discussed in the context of companion regional ocean model simulations. Finally, we address to what extent improvements in mean state lead to changes to the monthly to interannual variability. It is found that large-scale SST variability in EBUS on monthly and longer time scales is largely governed by teleconnections from climate modes and less sensitive to model resolution and forcing than the mean state.

Restricted access
M. J. Roberts
,
P. L. Vidale
,
C. Senior
,
H. T. Hewitt
,
C. Bates
,
S. Berthou
,
P. Chang
,
H. M. Christensen
,
S. Danilov
,
M.-E. Demory
,
S. M. Griffies
,
R. Haarsma
,
T. Jung
,
G. Martin
,
S. Minobe
,
T. Ringler
,
M. Satoh
,
R. Schiemann
,
E. Scoccimarro
,
G. Stephens
, and
M. F. Wehner

Abstract

The time scales of the Paris Climate Agreement indicate urgent action is required on climate policies over the next few decades, in order to avoid the worst risks posed by climate change. On these relatively short time scales the combined effect of climate variability and change are both key drivers of extreme events, with decadal time scales also important for infrastructure planning. Hence, in order to assess climate risk on such time scales, we require climate models to be able to represent key aspects of both internally driven climate variability and the response to changing forcings. In this paper we argue that we now have the modeling capability to address these requirements—specifically with global models having horizontal resolutions considerably enhanced from those typically used in previous Intergovernmental Panel on Climate Change (IPCC) and Coupled Model Intercomparison Project (CMIP) exercises. The improved representation of weather and climate processes in such models underpins our enhanced confidence in predictions and projections, as well as providing improved forcing to regional models, which are better able to represent local-scale extremes (such as convective precipitation). We choose the global water cycle as an illustrative example because it is governed by a chain of processes for which there is growing evidence of the benefits of higher resolution. At the same time it comprises key processes involved in many of the expected future climate extremes (e.g., flooding, drought, tropical and midlatitude storms).

Full access
E.A. D'Asaro
,
P. G. Black
,
L. R. Centurioni
,
Y.-T. Chang
,
S. S. Chen
,
R. C. Foster
,
H. C. Graber
,
P. Harr
,
V. Hormann
,
R.-C. Lien
,
I.-I. Lin
,
T. B. Sanford
,
T.-Y. Tang
, and
C.-C. Wu

Tropical cyclones (TCs) change the ocean by mixing deeper water into the surface layers, by the direct air–sea exchange of moisture and heat from the sea surface, and by inducing currents, surface waves, and waves internal to the ocean. In turn, the changed ocean influences the intensity of the TC, primarily through the action of surface waves and of cooler surface temperatures that modify the air–sea fluxes. The Impact of Typhoons on the Ocean in the Pacific (ITOP) program made detailed measurements of three different TCs (i.e., typhoons) and their interaction with the ocean in the western Pacific. ITOP coordinated meteorological and oceanic observations from aircraft and satellites with deployments of autonomous oceanographic instruments from the aircraft and from ships. These platforms and instruments measured typhoon intensity and structure, the underlying ocean structure, and the long-term recovery of the ocean from the storms' effects with a particular emphasis on the cooling of the ocean beneath the storm and the resulting cold wake. Initial results show how different TCs create very different wakes, whose strength and properties depend most heavily on the nondimensional storm speed. The degree to which air–sea fluxes in the TC core were reduced by ocean cooling varied greatly. A warm layer formed over and capped the cold wakes within a few days, but a residual cold subsurface layer persisted for 10–30 days.

Full access