Search Results

You are looking at 51 - 60 of 63 items for

  • Author or Editor: Steven B. Feldstein x
  • Refine by Access: All Content x
Clear All Modify Search
Dehai Luo, Yao Yao, Aiguo Dai, and Steven B. Feldstein
Full access
Xiaodan Chen, Dehai Luo, Steven B. Feldstein, and Sukyoung Lee

Abstract

Using daily reanalysis data from 1979 to 2015, this paper examines the impact of winter Ural blocking (UB) on winter Arctic sea ice concentration (SIC) change over the Barents and Kara Seas (BKS). A case study of the sea ice variability in the BKS in the 2015/16 and 2016/17 winters is first presented to establish a link between the BKS sea ice variability and UB events. Then the UB events are classified into quasi-stationary (QUB), westward-shifting (WUB), and eastward-shifting (EUB) UB types. It is found that the frequency of the QUB events increases significantly during 1999–2015, whereas the WUB events show a decreasing frequency trend during 1979–2015.

Moreover, it is shown that the variation of the BKS-SIC is related to downward infrared radiation (IR) and surface sensible and latent heat flux changes due to different zonal movements of the UB. Calculations show that the downward IR is the main driver of the BKS-SIC decline for QUB events, while the downward IR and surface sensible heat flux make comparable contributions to the BKS-SIC variation for WUB and EUB events. The SIC decline peak lags the QUB and EUB peaks by about 3 days, though QUB and EUB require lesser prior SIC. The QUB gives rise to the largest SIC decline likely because of its longer persistence, whereas the BKS-SIC decline is relatively weak for the EUB. The WUB is found to cause a SIC decline during its growth phase and an increase during its decay phase. Thus, the zonal movement of the UB has an important impact on the SIC variability in BKS.

Full access
Sergey Kravtsov, John E. Ten Hoeve, Steven B. Feldstein, Sukyoung Lee, and Seok-Woo Son

Abstract

Simulations using an idealized, atmospheric general circulation model (GCM) subjected to various thermal forcings are analyzed via a combination of probability density function (PDF) estimation and spectral analysis techniques. Seven different GCM runs are examined, each model run being characterized by different values in the strength of the tropical heating and high-latitude cooling. For each model run, it is shown that a linear stochastic model constructed in the phase space of the ten leading empirical orthogonal functions (EOFs) of the zonal-mean zonal flow provides an excellent statistical approximation to the simulated zonal flow variability, which includes zonal index fluctuations, and quasi-oscillatory, poleward, zonal-mean flow anomaly propagation. Statistically significant deviations from the above linear stochastic null hypothesis arise in the form of a few anomalously persistent, or statistically nonlinear, flow patterns, which occupy particular regions of the model’s phase space. Some of these nonlinear regimes occur during certain phases of the poleward propagation; however, such an association is, in general, weak. This indicates that the regimes and oscillations in the model may be governed by distinct dynamical mechanisms.

Full access
Matthew D. Flournoy, Steven B. Feldstein, Sukyoung Lee, and Eugene E. Clothiaux

Abstract

The Tropically Excited Arctic Warming (TEAM) mechanism ascribes warming of the Arctic surface to tropical convection, which excites poleward-propagating Rossby wave trains that transport water vapor and heat into the Arctic. A crucial component of the TEAM mechanism is the increase in downward infrared radiation (IR) that precedes the Arctic warming. Previous studies have examined the downward IR associated with the TEAM mechanism using reanalysis data. To corroborate previous findings, this study examines the linkage between tropical convection, Rossby wave trains, and downward IR with Baseline Surface Radiation Network (BSRN) downward IR station data. The physical processes that drive changes in the downward IR are also investigated by regressing 300-hPa geopotential height, outgoing longwave radiation, water vapor flux, ERA-Interim downward IR, and other key variables against the BSRN downward IR at Barrow, Alaska, and Ny-Ålesund, Spitsbergen.

Both the Barrow and the Ny-Ålesund station downward IR anomalies are preceded by anomalous tropical convection and poleward-propagating Rossby wave trains. The wave train associated with Barrow resembles the Pacific–North America teleconnection pattern, and that for Ny-Ålesund corresponds to a northwestern Atlantic wave train. It is found that both wave trains promote warm and moist advection from the midlatitudes into the Arctic. The resulting water vapor flux convergence, multiplied by the latent heat of vaporization, closely resembles the regressed ERA-Interim downward IR. These results suggest that the combination of warm advection, latent heat release, and increased cloudiness all contribute toward an increase in downward IR.

Full access
Nathaniel C. Johnson, Dan C. Collins, Steven B. Feldstein, Michelle L. L’Heureux, and Emily E. Riddle

Abstract

Previous work has shown that the combined influence of El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) significantly impacts the wintertime circulation over North America for lead times up to at least 4 weeks. These findings suggest that both the MJO and ENSO may prove beneficial for generating a seamless prediction link between short-range deterministic forecasts and longer-range seasonal forecasts. To test the feasibility of this link, wintertime (December–March) probabilistic 2-m temperature (T2m) forecasts over North America are generated solely on the basis of the linear trend and statistical relationships with the initial state of the MJO and ENSO. Overall, such forecasts exhibit substantial skill for some regions and some initial states of the MJO and ENSO out to a lead time of approximately 4 weeks. In addition, the primary ENSO T2m regions of influence are nearly orthogonal to those of the MJO, which suggests that the MJO and ENSO generally excite different patterns within the continuum of large-scale atmospheric teleconnections. The strong forecast skill scores for some regions and initial states confirm the promise that information from the MJO and ENSO may offer forecasts of opportunity in weeks 3 and 4, which extend beyond the current 2-week extended-range outlooks of the National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Center (CPC), and an intraseasonal link to longer-range probabilistic forecasts.

Full access
Joseph P. Clark, Vivek Shenoy, Steven B. Feldstein, Sukyoung Lee, and Michael Goss

Abstract

The wintertime (December–February) 1990–2016 Arctic surface air temperature (SAT) trend is examined using self-organizing maps (SOMs). The high-dimensional SAT dataset is reduced into nine representative SOM patterns, with each pattern exhibiting a decorrelation time scale of about 10 days and having about 85% of its variance coming from intraseasonal time scales. The trend in the frequency of occurrence of each SOM pattern is used to estimate the interdecadal Arctic winter warming trend associated with the SOM patterns. It is found that trends in the SOM patterns explain about one-half of the SAT trend in the Barents and Kara Seas, one-third of the SAT trend around Baffin Bay, and two-thirds of the SAT trend in the Chukchi Sea. A composite calculation of each term in the thermodynamic energy equation for each SOM pattern shows that the SAT anomalies grow primarily through the advection of the climatological temperature by the anomalous wind. This implies that a substantial fraction of Arctic amplification is due to horizontal temperature advection that is driven by changes in the atmospheric circulation. An analysis of the surface energy budget indicates that the skin temperature anomalies as well as the trend, although very similar to that of the SAT, are produced primarily by downward longwave radiation.

Restricted access
Benkui Tan, Jiacan Yuan, Ying Dai, Steven B. Feldstein, and Sukyoung Lee

Abstract

The eastern Pacific (EP) pattern is a recently detected atmospheric teleconnection pattern that frequently occurs during late winter. Through analysis of daily ERA-Interim data and outgoing longwave radiation data for the period of 1979–2011, it is shown here that the formation of the EP is preceded by an anomalous tropical convection dipole, with one extremum located over the eastern Indian Ocean–Maritime Continent and the other over the central Pacific. This is followed by the excitation of two quasi-stationary Rossby wave trains. Departing from the subtropics, north of the region of anomalous convection, one Rossby wave train propagates eastward along the East Asian jet from southern China toward the eastern Pacific. The second wave train propagates northward from east of Japan toward eastern Siberia and then turns southeastward to the Gulf of Alaska. Both wave trains are associated with wave activity flux convergence where the EP pattern develops. The results from an examination of the E vector suggest that the EP undergoes further growth with the aid of positive feedback from high-frequency transient eddies. The frequency of occurrence of the dipole convection anomaly increases significantly from early to late winter, a finding that suggests that it is the seasonal change in the convection anomaly that accounts for the EP being more dominant in late winter.

Full access
Sukyoung Lee, Tingting Gong, Nathaniel Johnson, Steven B. Feldstein, and David Pollard

Abstract

This study presents mechanisms for the polar amplification of surface air temperature that occurred in the Northern Hemisphere (NH) between the periods of 1958–77 (P1) and 1982–2001 (P2). Using European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) reanalysis data, it is found that over the ice-covered Arctic Ocean, the winter surface warming arises from dynamic warming (stationary eddy heat flux and adiabatic warming). Over the ice-free Arctic Ocean between the Greenland and the Barents Seas, downward infrared radiative (IR) flux is found to dominate the warming.

To investigate whether the difference in the flow between P1 and P2 is due to changes in the frequency of occurrence of a small number of teleconnection patterns, a coupled self-organizing map (SOM) analysis of the 250-hPa streamfunction and tropical convective precipitation is performed. The latter field was specified to lead the former by 5 days. The results of the analysis showed that the P2 − P1 trend arises from a decrease in the frequency of negative phase PNA-like and circumglobal streamfunction patterns and a corresponding increase in the frequency of positive PNA-like and circumglobal streamfunction patterns. The occurrence of the two strong 1982–83 and 1997–98 El Niño events also contributes toward this trend. The corresponding trend in the convective precipitation is from below average to above average values in the tropical Indo-western Pacific region. Each of the above patterns was found to have an e-folding time scale from 6 to 8 days, which implies that the P2 − P1 trend can be understood as arising from the change in the frequency of occurrence of teleconnection patterns that fluctuate on intraseasonal time scales.

The link between intraseasonal and interannual variability was further examined by linearly regressing various quantities against trend patterns with interannual variability subtracted. It was found that enhanced convective precipitation is followed 3–6 days later by the occurrence of the P2 − P1 circulation trend pattern, and then 1–2 days later by the corresponding trend pattern in the downward IR flux. This finding suggests that an increased frequency of the above sequence of events, which occurs on intraseasonal time scales, can account for the NH winter polar amplification of the surface air temperature via increased dynamic warming and downward IR flux.

Full access
Changhyun Yoo, Nathaniel C. Johnson, Chueh-Hsin Chang, Steven B. Feldstein, and Young-Ha Kim

Abstract

A composite-based statistical model utilizing Northern Hemisphere teleconnection patterns is developed to predict East Asian wintertime surface air temperature for lead times out to 6 weeks. The level of prediction is determined by using the Heidke skill score. The prediction skill of the statistical model is compared with that of hindcast simulations by a climate model, Global Seasonal Forecast System, version 5. When employed individually, three teleconnections (i.e., the east Atlantic/western Russian, Scandinavian, and polar/Eurasian teleconnection patterns) are found to provide skillful predictions for lead times beyond 4–5 weeks. When information from the teleconnections and the long-term linear trend are combined, the statistical model outperforms the climate model for lead times beyond 3 weeks, especially during those times when the teleconnections are in their active phases.

Full access
Seok-Woo Son, Sukyoung Lee, Steven B. Feldstein, and John E. Ten Hoeve

Abstract

The physical processes that determine the time scale of zonal-mean-flow variability are examined with an idealized numerical model that has a zonally symmetric lower boundary. In the part of the parameter space where the time-mean zonal flow is characterized by a single (double) jet, the dominant form of zonal-mean-flow variability is the zonal index (poleward propagation), and the time-mean potential vorticity gradient is found to be strong and sharp (weak and broad). The e-folding time scale of the zonal index is found to be close to 55 days, much longer than the observed 10-day time scale. The e-folding time scale of the poleward propagation is about 40 days. The long e-folding time scales for the zonal index are found to be consistent with an unrealistically strong and persistent eddy–zonal-mean-flow feedback. A calculation of the refractive index indicates that the background flow supports eddies that are trapped within midlatitudes, undergoing relatively little meridional propagation.

Additional model runs are performed with an idealized mountain to investigate whether zonal asymmetry can disrupt the eddy feedback. For single-jet states, the time scale is reduced to about 30 days if the mountain height is 4 km or less. The reduction in the time scale occurs because the stationary eddies excited by the mountain alter the background flow in a manner that leads to the replacement of zonal-index events by shorter-time-scale poleward propagation. With a 5-km mountain, the time scale reverts and increases to 105 days. This threshold behavior is again attributed to a sharpening of the background zonal jet, which arises from an extremely strong stationary wave momentum flux convergence. In contrast, for double-jet states, the time scale changes only slightly and the poleward propagation is maintained in all mountain runs.

Full access