Search Results

You are looking at 51 - 60 of 65 items for

  • Author or Editor: Wei Zhao x
  • Refine by Access: All Content x
Clear All Modify Search
Yong Zhao
,
Anning Huang
,
Yang Zhou
,
Danqing Huang
,
Qing Yang
,
Yufen Ma
,
Man Li
, and
Gang Wei

Abstract

The changes in summer rainfall over the Tarim Basin, China, and the underlying mechanisms have been investigated using the observed rainfall data at 34 stations and the NCEP–NCAR reanalysis data during the period of 1961–2007. Results show that the summer rainfall over the Tarim Basin, which exhibits a significant increasing trend during the last half century, is closely related to the summer middle and upper tropospheric cooling over central Asia. Mechanism analysis indicates that the middle and upper tropospheric cooling over central Asia results in a location farther south of the subtropical westerly jet over western and central Asia with anomalous southerly wind at lower levels and ascending motion prevailing over the Tarim Basin. Such anomalies in the atmospheric circulations provide favorable conditions for the enhanced summer rainfall over the Tarim Basin. Further analysis suggests that the weakened South Asian summer monsoon (SASM) could be potentially responsible for the middle and upper tropospheric cooling over central Asia. This is largely through the atmospheric responses to the diabatic heating effect of the SASM. A weakened SASM can result in an anomalous cyclone in the middle and upper troposphere over central Asia. The western part of the anomalous cyclone produces more cold air advection, which leads to the cooling. This study suggests indirect but important effects of the SASM on the summer rainfall over the Tarim Basin.

Full access
Tianjiao Ma
,
Wen Chen
,
Shangfeng Chen
,
Chaim I. Garfinkel
,
Shuoyi Ding
,
Lei Song
,
Zhibo Li
,
Yulian Tang
,
Jingliang Huangfu
,
Hainan Gong
, and
Wei Zhao

Abstract

This study aims to better understand the ENSO impacts on climate anomalies over East Asia in early winter (November–December) and late winter (January–February). In particular, the possible mechanisms during early winter are investigated. The results show that ENSO is associated with a Rossby wave train emanating from the tropical Indian Ocean toward East Asia (denoted as tIO-EA) in early winter. This tIO-EA wave train in El Niño (La Niña) is closely related to a weakening (strengthening) of the East Asian trough, and thereby a weakened (strengthened) East Asian winter monsoon and warm (cold) temperature anomalies over northeastern China and Japan. By using partial regression analysis and numerical experiments, we identify that the formation of tIO-EA wave train is closely related to precipitation anomalies in the tropical eastern Indian Ocean and western Pacific (denoted as eIO/wP). In addition, the ENSO-induced North Atlantic anomalies may also contribute to formation of the tIO-EA wave train in conjunction with the eIO/wP precipitation. The response of eIO/wP precipitation to ENSO is stronger in early winter than in late winter. This can be attributed to the stronger anomalous Walker circulation over the Indian Ocean, which in turn is caused by higher climatological SST and stronger mean precipitation state in the Indian Ocean during early winter.

Free access
Wei Zhao
,
Shangfeng Chen
,
Hengde Zhang
,
Jikang Wang
,
Wen Chen
,
Renguang Wu
,
Wanqiu Xing
,
Zhibiao Wang
,
Peng Hu
,
Jinling Piao
, and
Tianjiao Ma

Abstract

The Beijing–Tianjin–Hebei (BTH) region has encountered increasingly severe and frequent haze pollution during recent decades. This study reveals that El Niño–Southern Oscillation (ENSO) has distinctive impacts on interannual variations of haze pollution over BTH in early and late winters. The impact of ENSO on the haze pollution over the BTH is strong in early winter, but weak in late winter. In early winter, ENSO-related sea surface temperature anomalies generate double-cell Walker circulation anomalies, with upward motion anomalies over the tropical central-eastern Pacific and tropical Indian Ocean, and downward motion anomalies over the tropical western Pacific. The ascending motion and enhanced atmospheric heating anomalies over the tropical Indian Ocean trigger atmospheric teleconnection propagating from the north Indian Ocean to East Asia, and result in the generation of an anticyclonic anomaly over Northeast Asia. The associated southerly anomalies to the west side lead to more serious haze pollution via reducing surface wind speed and increasing low-level humidity and the thermal inversion. The strong contribution of the Indian Ocean heating anomalies to the formation of the anticyclonic anomaly over Northeast Asia in early winter can be confirmed by atmospheric model numerical experiments. In late winter, vertical motion and precipitation anomalies are weak over the tropical Indian Ocean related to ENSO. As such, ENSO cannot induce a clear anticyclonic anomaly over Northeast Asia via atmospheric teleconnection, and thus has a weak impact on the haze pollution over BTH. Further analysis shows that stronger ENSO-induced atmospheric heating anomalies over the tropical Indian Ocean in early winter are partially due to higher mean SST and precipitation there.

Significance Statement

There exist large discrepancies regarding the contribution of El Niño–Southern Oscillation (ENSO) events to the wintertime haze pollution over North China. Several studies have indicated that ENSO has a weak impact on the haze pollution over North China. However, some studies have argued that ENSO events can exert impacts on the occurrence of haze pollution over North China. In this study, we present evidence to demonstrate that ENSO has distinctive impacts on interannual variations of the haze pollution over the Beijing–Tianjin–Hebei (BTH) region in North China in early and late winters. Specifically, ENSO has a strong impact on the haze pollution over BTH in early winter, whereas the impact of ENSO on the haze pollution over BTH is fairly weak in late winter. Results of this study could reconcile the discrepancy of previous studies about the impact of ENSO on the haze pollution over North China.

Full access
Qinbo Xu
,
Chun Zhou
,
Wei Zhao
,
Qianwen Hu
,
Xin Xiao
,
Dongqing Zhang
,
Fan Yang
,
Xiaodong Huang
, and
Jiwei Tian

Abstract

Intraseasonal fluctuation with periods of ∼90 days in the South China Sea (SCS) basin is investigated based on an array of seven subsurface moorings. In the deep layer, the 90-day fluctuation is revealed to contribute significantly to the variability in the current, accounting for ∼69% of the subinertial variance. This fluctuation propagates westward along the mooring section with a phase speed of ∼4.6 cm s−1. In the upper layer, the fluctuation also propagates westward with a similar phase speed, but with opposite phase to that of the deep layer. These results suggest that the 90-day fluctuation regulating the abyssal SCS should be the first mode baroclinic Rossby wave. A set of experiments based on a two-layer dynamic model reveal that both the local wind stress curl and the flow originating from the North Pacific through the Luzon Strait contribute to drive the 90-day fluctuation in the deep SCS, while the latter plays the dominant role.

Open access
Zhongbin Sun
,
Zhiwei Zhang
,
Cheng Li
,
Dongliang Yuan
,
Qingguo Yuan
,
Wenbo Lu
,
Yuelin Liu
,
Chun Zhou
,
Jing Wang
,
Ya Yang
,
Wei Zhao
, and
Jiwei Tian

Abstract

Full-depth ocean zonal currents in the tropical and extratropical northwestern Pacific (TNWP) are studied using current measurements from 17 deep-ocean moorings deployed along the 143°E meridian from the equator to 22°N during January 2016–February 2017. Mean transports of the North Equatorial Current and North Equatorial Countercurrent are estimated to be 42.7 ± 7.1 Sv (1 Sv ≡ 106 m3 s−1) and 10.5 ± 5.3 Sv, respectively, both of which exhibit prominent annual cycles with opposite phases in this year. The observations suggest much larger vertical extents of several of the major subsurface currents than previously reported, including the Lower Equatorial Intermediate Current, Northern Intermediate Countercurrent, North Equatorial Subsurface Current, and North Equatorial Undercurrent (NEUC) from south to north. The Northern Subsurface Countercurrent and NEUC are found to be less steady than the other currents. Seasonal variations of these currents are also revealed in the study. In the deep ocean, the currents below 2000 m are reported for the first time. The observations confirm the striation patterns of meridionally alternating zonal currents in the intermediate and deep layers. Further analyses suggest a superposition of at least the first four and two baroclinic modes to represent the mean equatorial and off-equatorial currents, respectively. Meanwhile, seasonal variations of the currents are generally dominated by the first baroclinic mode associated with the low-mode Rossby waves. Overall, the above observational results not only enhance the knowledge of full-depth current system in the TNWP but also provide a basis for future model validation and skill improvement.

Restricted access
Qianwen Hu
,
Xiaodong Huang
,
Qinbo Xu
,
Chun Zhou
,
Shoude Guan
,
Xing Xu
,
Wei Zhao
,
Qingxuan Yang
, and
Jiwei Tian

Abstract

Internal waves close to the seafloor of abyssal oceans are the key energy suppliers driving near-bottom mixing and the upwelling branches of meridional overturning circulation, but their spatiotemporal variability and intrinsic mechanisms remain largely unclear. In this study, measurements from 10 long-term moorings were used to investigate the internal wave activities in the abyssal South China Sea, which is an important upwelling zone. Strong near-inertial internal waves (NIWs) with current velocity pulses exceeding 5 cm s−1 were observed to dominate the near-bottom internal wave field at approximately 14°N. These abyssal NIWs were phase-coupled with diurnal internal tides (D1), and both displayed common seasonal variations that were larger in winter and summer, providing evidence of diurnal parametric subharmonic instability (PSI) near its critical latitudes (CLs). Emitted from the bottom, near-inertial kinetic energy rapidly decreased by one order of magnitude from depths of ∼120 to ∼620 m above the bottom. Near rough topographies, the abyssal PSI was shifted poleward to approximately 14.8°N by negative relative vorticities of passing anticyclonic eddies or topographic Rossby waves. Compared with flat topography, PSI near rough topography was significantly promoted by topographic-localized strong D1 with high-mode structures, creating abyssal NIW bursts. Bottom-reaching shipboard conductivity–temperature–depth profiles revealed that the bottom mixed layers became much thicker when approaching CLs, suggesting that abyssal PSI potentially accelerates the ventilation and upwelling of bottom water. The observational results presented here illustrate notable spatiotemporal variations in abyssal NIWs regulated by PSI and call for consideration of PSI to better understand near-bottom mixing and upwelling.

Free access
Xuefeng Zhang
,
Peter C. Chu
,
Wei Li
,
Chang Liu
,
Lianxin Zhang
,
Caixia Shao
,
Xiaoshuang Zhang
,
Guofang Chao
, and
Yuxin Zhao

Abstract

Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.

Full access
Lei Wang
,
Lan Cuo
,
Dongliang Luo
,
Fengge Su
,
Qinghua Ye
,
Tandong Yao
,
Jing Zhou
,
Xiuping Li
,
Ning Li
,
He Sun
,
Lei Liu
,
Yuanwei Wang
,
Tian Zeng
,
Zhidan Hu
,
Ruishun Liu
,
Chenhao Chai
,
Guangpeng Wang
,
Xiaoyang Zhong
,
Xiaoyu Guo
,
Haoqiang Zhao
,
Huabiao Zhao
, and
Wei Yang

Abstract

Upper Brahmaputra (UB) is the largest (∼240,000 km2) river basin of the Tibetan Plateau, where hydrological processes are highly sensitive to climate change. However, constrained by difficult access and sparse in situ observations, the variations in precipitation, glaciers, frozen ground, and vegetation across the UB basin remain largely unknown, and consequently the impacts of climate change on streamflow cannot be accurately assessed. To fill this gap, this project aims to establish a basinwide, large-scale observational network (that includes hydrometeorology, glacier, frozen ground, and vegetation observations), which helps quantify the UB runoff processes under climate–cryosphere–vegetation changes. At present, a multisphere observational network has been established throughout the catchment: 1) 12 stations with custom-built weighing automatic rain/snow meters and temperature probes to obtain elevation-dependent gradients; 2) 9 stations with soil moisture/temperature observations at four layers (10, 40, 80, 120 cm) covering Alpine meadow, grasslands, shrub, and forest to measure vegetation (biomass and vegetation types) and soil (physical properties) simultaneously; 3) 34 sets of probes to monitor frozen ground temperatures from 4,500 to 5,200 m elevation (100-m intervals), and two observation systems to monitor water and heat transfer processes in frozen ground at Xuegela (5,278 m) and Mayoumula (5,256 m) Mountains, for improved mapping of permafrost and active layer characteristics; 4) 5 sets of altimetry discharge observations along ungauged cross sections to supplement existing operational gauges; 5) high-precision glacier boundary and ice-surface elevation observations at Namunani Mountain with differential GPS, to supplement existing glacier observations for validating satellite imagery. This network provides an excellent opportunity to monitor UB catchment processes in great detail.

Full access
Zepei Wu
,
Shuo Liu
,
Delong Zhao
,
Ling Yang
,
Zixin Xu
,
Zhipeng Yang
,
Dantong Liu
,
Tao Liu
,
Yan Ding
,
Wei Zhou
,
Hui He
,
Mengyu Huang
,
Ruijie Li
, and
Deping Ding

Abstract

Cloud particles have different shapes in the atmosphere. Research on cloud particle shapes plays an important role in analyzing the growth of ice crystals and the cloud microphysics. To achieve an accurate and efficient classification algorithm on ice crystal images, this study uses image-based morphological processing and principal component analysis to extract features of images and apply intelligent classification algorithms for the Cloud Particle Imager (CPI). Currently, there are mainly two types of ice-crystal classification methods: one is the mode parameterization scheme, and the other is the artificial intelligence model. Combined with data feature extraction, the dataset was tested on 10 types of classifiers, and the highest average accuracy was 99.07%. The fastest processing speed of the real-time data processing test was 2000 images per second. In actual application, the algorithm should consider the processing speed, because the images are on the order of millions. Therefore, a support vector machine (SVM) classifier was used in this study. The SVM-based optimization algorithm can classify ice crystals into nine classes with an average accuracy of 95%, blurred frame accuracy of 100%, with a processing speed of 2000 images per second. This method has a relatively high accuracy and faster classification processing speed than the classic neural network model. The new method could be also applied in physical parameter analysis of cloud microphysics.

Full access
Clara Orbe
,
Luke Van Roekel
,
Ángel F. Adames
,
Amin Dezfuli
,
John Fasullo
,
Peter J. Gleckler
,
Jiwoo Lee
,
Wei Li
,
Larissa Nazarenko
,
Gavin A. Schmidt
,
Kenneth R. Sperber
, and
Ming Zhao

Abstract

We compare the performance of several modes of variability across six U.S. climate modeling groups, with a focus on identifying robust improvements in recent models [including those participating in phase 6 of the Coupled Model Intercomparison Project (CMIP)] compared to previous versions. In particular, we examine the representation of the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), the quasi-biennial oscillation (QBO) in the tropical stratosphere, and the dominant modes of extratropical variability, including the southern annular mode (SAM), the northern annular mode (NAM) [and the closely related North Atlantic Oscillation (NAO)], and the Pacific–North American pattern (PNA). Where feasible, we explore the processes driving these improvements through the use of “intermediary” experiments that utilize model versions between CMIP3/5 and CMIP6 as well as targeted sensitivity experiments in which individual modeling parameters are altered. We find clear and systematic improvements in the MJO and QBO and in the teleconnection patterns associated with the PDO and ENSO. Some gains arise from better process representation, while others (e.g., the QBO) from higher resolution that allows for a greater range of interactions. Our results demonstrate that the incremental development processes in multiple climate model groups lead to more realistic simulations over time.

Free access