Search Results

You are looking at 51 - 58 of 58 items for

  • Author or Editor: Wen-Chau Lee x
  • Refine by Access: All Content x
Clear All Modify Search
Paul R. Harasti
,
Colin J. McAdie
,
Peter P. Dodge
,
Wen-Chau Lee
,
John Tuttle
,
Shirley T. Murillo
, and
Frank D. Marks Jr.

Abstract

The NOAA/NWS/NCEP/Tropical Prediction Center/National Hurricane Center has sought techniques that use single-Doppler radar data to estimate the tropical cyclone wind field. A cooperative effort with NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division and NCAR has resulted in significant progress in developing a method whereby radar display data are used as a proxy for a full-resolution base data and in improving and implementing existing wind retrieval and center-finding techniques. These techniques include the ground-based velocity track display (GBVTD), tracking radar echoes by correlation (TREC), GBVTD- simplex, and the principal component analysis (PCA) methods.

The GBVTD and TREC algorithms are successfully applied to the Weather Surveillance Radar-1988 Doppler (WSR-88D) display data of Hurricane Bret (1999) and Tropical Storm Barry (2001). GBVTD analyses utilized circulation center estimates provided by the GBVTD-simplex and PCA methods, whereas TREC analyses utilized wind center estimates provided by radar imagery and aircraft measurements. GBVTD results demonstrate that the use of the storm motion as a proxy for the mean wind is not always appropriate and that results are sensitive to the accuracy of the circulation center estimate. TREC results support a previous conjecture that the use of polar coordinates would produce improved wind retrievals for intense tropical cyclones. However, there is a notable effect in the results when different wind center estimates are used as the origin of coordinates. The overall conclusion is that GBVTD and TREC have the ability to retrieve the intensity of a tropical cyclone with an accuracy of ∼2 m s−1 or better if the wind intensity estimates from individual analyses are averaged together.

Full access
Paul E. Ciesielski
,
Wen-Ming Chang
,
Shao-Chin Huang
,
Richard H. Johnson
,
Ben Jong-Dao Jou
,
Wen-Chau Lee
,
Po-Hsiung Lin
,
Ching-Hwang Liu
, and
Junhong Wang

Abstract

During the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX), which coincided with Taiwan’s Southwesterly Monsoon Experiment—2008 (SoWMEX-08), the upper-air sounding network over the Taiwan region was enhanced by increasing the radiosonde (“sonde”) frequency at its operational sites and by adding several additional sites (three that were land based and two that were ship based) and aircraft dropsondes. During the special observing period of TiMREX (from 15 May to 25 June 2008), 2330 radiosonde observations were successfully taken from the enhanced network. Part of the challenge of processing the data from the 13 upsonde sites is that four different sonde types (Vaisala RS80, Vaisala RS92, Meisei, and Graw) were used. Post–field phase analyses of the sonde data revealed a significant dry bias in many of the sondes—in particular, in the data from the Vaisala RS80 sondes that were used at four sites. In addition, contamination of the sonde data by the ship’s structure resulted in poor-quality low-level thermodynamic data at a key oceanic site. This article examines the methods used to quality control the sonde data and, when possible, to correct them. Particular attention is given to the correction of the humidity field and its impact on various convective measures. Comparison of the corrected sonde humidity data with independent estimates shows good agreement, suggesting that the corrections were effective in removing many of the sonde humidity errors. Examining various measures of convection shows that use of the humidity-corrected sondes gives a much different perspective on the characteristics of convection during TiMREX. For example, at the RS80 sites, use of the corrected humidity data increases the mean CAPE by ∼500 J kg−1, decreases mean convective inhibition (CIN) by 80 J kg−1, and increases the midlevel convective mass flux by greater than 70%. Ultimately, these corrections will provide more accurate moisture fields for diagnostic analyses and modeling studies.

Full access
Qingnong Xiao
,
Eunha Lim
,
Duk-Jin Won
,
Juanzhen Sun
,
Wen-Chau Lee
,
Mi-Seon Lee
,
Woo-Jin Lee
,
Joo-Young Cho
,
Ying-Hwa Kuo
,
Dale M. Barker
,
Dong-Kyou Lee
, and
Hee-Sang Lee
Full access
Robert A. Houze Jr.
,
Shuyi S. Chen
,
Wen-Chau Lee
,
Robert F. Rogers
,
James A. Moore
,
Gregory J. Stossmeister
,
Michael M. Bell
,
Jasmine Cetrone
,
Wei Zhao
, and
S. Rita Brodzik

The Hurricane Rainband and Intensity Change Experiment (RAINEX) used three P3 aircraft aided by high-resolution numerical modeling and satellite communications to investigate the 2005 Hurricanes Katrina, Ophelia, and Rita. The aim was to increase the understanding of tropical cyclone intensity change by interactions between a tropical cyclone's inner core and rainbands. All three aircraft had dual-Doppler radars, with the Electra Doppler Radar (ELDORA) on board the Naval Research Laboratory's P3 aircraft, providing particularly detailed Doppler radar data. Numerical model forecasts helped plan the aircraft missions, and innovative communications and data transfer in real time allowed the flights to be coordinated from a ground-based operations center. The P3 aircraft released approximately 600 dropsondes in locations targeted for optimal coordination with the Doppler radar data, as guided by the operations center. The storms were observed in all stages of development, from tropical depression to category 5 hurricane. The data from RAINEX are readily available through an online Field Catalog and RAINEX Data Archive. The RAINEX dataset is illustrated in this article by a preliminary analysis of Hurricane Rita, which was documented by multiaircraft flights on five days 1) while a tropical storm, 2) while rapidly intensifying to a category 5 hurricane, 3) during an eye-wall replacement, 4) when the hurricane became asymmetric upon encountering environmental shear, and 5) just prior to landfall.

Full access
Bart Geerts
,
David J. Raymond
,
Vanda Grubišić
,
Christopher A. Davis
,
Mary C. Barth
,
Andrew Detwiler
,
Petra M. Klein
,
Wen-Chau Lee
,
Paul M. Markowski
,
Gretchen L. Mullendore
, and
James A. Moore

Abstract

Recommendations are presented for in situ and remote sensing instruments and capabilities needed to advance the study of convection and turbulence in the atmosphere. These recommendations emerged from a community workshop held on 22–24 May 2017 at the National Center for Atmospheric Research and sponsored by the National Science Foundation. Four areas of research were distinguished at this workshop: i) boundary layer flows, including convective and stable boundary layers over heterogeneous land use and terrain conditions; ii) dynamics and thermodynamics of convection, including deep and shallow convection and continental and maritime convection; iii) turbulence above the boundary layer in clouds and in clear air, terrain driven and elsewhere; and iv) cloud microphysical and chemical processes in convection, including cloud electricity and lightning.

The recommendations presented herein address a series of facilities and capabilities, ranging from existing ones that continue to fulfill science needs and thus should be retained and/or incrementally improved, to urgently needed new facilities, to desired capabilities for which no adequate solutions are as yet on the horizon. A common thread among all recommendations is the need for more highly resolved sampling, both in space and in time. Significant progress is anticipated, especially through the improved availability of airborne and ground-based remote sensors to the National Science Foundation (NSF)-supported community.

Full access
Pavlos Kollias
,
Robert Palmer
,
David Bodine
,
Toru Adachi
,
Howie Bluestein
,
John Y. N. Cho
,
Casey Griffin
,
Jana Houser
,
Pierre. E. Kirstetter
,
Matthew R. Kumjian
,
James M. Kurdzo
,
Wen Chau Lee
,
Edward P. Luke
,
Steve Nesbitt
,
Mariko Oue
,
Alan Shapiro
,
Angela Rowe
,
Jorge Salazar
,
Robin Tanamachi
,
Kristofer S. Tuftedal
,
Xuguang Wang
,
Dusan Zrnić
, and
Bernat Puigdomènech Treserras

Abstract

Phased array radars (PARs) are a promising observing technology, at the cusp of being available to the broader meteorological community. PARs offer near-instantaneous sampling of the atmosphere with flexible beam forming, multifunctionality, and low operational and maintenance costs and without mechanical inertia limitations. These PAR features are transformative compared to those offered by our current reflector-based meteorological radars. The integration of PARs into meteorological research has the potential to revolutionize the way we observe the atmosphere. The rate of adoption of PARs in research will depend on many factors, including (i) the need to continue educating the scientific community on the full technical capabilities and trade-offs of PARs through an engaging dialogue with the science and engineering communities and (ii) the need to communicate the breadth of scientific bottlenecks that PARs can overcome in atmospheric measurements and the new research avenues that are now possible using PARs in concert with other measurement systems. The former is the subject of a companion article that focuses on PAR technology while the latter is the objective here.

Full access
Christopher Davis
,
Nolan Atkins
,
Diana Bartels
,
Lance Bosart
,
Michael Coniglio
,
George Bryan
,
William Cotton
,
David Dowell
,
Brian Jewett
,
Robert Johns
,
David Jorgensen
,
Jason Knievel
,
Kevin Knupp
,
Wen-Chau Lee
,
Gregory McFarquhar
,
James Moore
,
Ron Przybylinski
,
Robert Rauber
,
Bradley Smull
,
Robert Trapp
,
Stanley Trier
,
Roger Wakimoto
,
Morris Weisman
, and
Conrad Ziegler

The Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) is a research investigation using highly mobile platforms to examine the life cycles of mesoscale convective systems. It represents a combination of two related investigations to study (a) bow echoes, principally those that produce damaging surface winds and last at least 4 h, and (b) larger convective systems that produce long-lived mesoscale convective vortices (MCVs). The field phase of BAMEX utilized three instrumented research aircraft and an array of mobile ground-based instruments. Two long-range turboprop aircraft were equipped with pseudo-dual-Doppler radar capability, the third aircraft was a jet equipped with dropsondes. The aircraft documented the environmental structure of mesoscale convective systems (MCSs), observed the kinematic and thermodynamic structure of the convective line and stratiform regions (where rear-inflow jets and MCVs reside), and captured the structure of mature MCVs. The ground-based instruments augmented sounding coverage and documented the thermodynamic structure of the PBL, both within MCSs and in their environment. The present article reviews the scientific goals of the study and the facility deployment strategy, summarizes the cases observed, and highlights the forthcoming significant research directions and opportunities.

Full access
Howard B. Bluestein
,
Robert M. Rauber
,
Donald W. Burgess
,
Bruce Albrecht
,
Scott M. Ellis
,
Yvette P. Richardson
,
David P. Jorgensen
,
Stephen J. Frasier
,
Phillip Chilson
,
Robert D. Palmer
,
Sandra E. Yuter
,
Wen-Chau Lee
,
David C. Dowell
,
Paul L. Smith
,
Paul M. Markowski
,
Katja Friedrich
, and
Tammy M. Weckwerth

To assist the National Science Foundation in meeting the needs of the community of scientists by providing them with the instrumentation and platforms necessary to conduct their research successfully, a meeting was held in late November 2012 with the purpose of defining the problems of the next generation that will require radar technologies and determining the suite of radars best suited to help solve these problems. This paper summarizes the outcome of the meeting: (i) Radars currently in use in the atmospheric sciences and in related research are reviewed. (ii) New and emerging radar technologies are described. (iii) Future needs and opportunities for radar support of high-priority research are discussed. The current radar technologies considered critical to answering the key and emerging scientific questions are examined. The emerging radar technologies that will be most helpful in answering the key scientific questions are identified. Finally, gaps in existing radar observing technologies are listed.

Full access