Search Results

You are looking at 51 - 60 of 90 items for

  • Author or Editor: Xuguang Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Christopher A. Kerr
,
David J. Stensrud
, and
Xuguang Wang

Abstract

The Geostationary Operational Environmental Satellite-R Series will provide cloud-top observations on the convective scale at roughly the same frequency as Doppler radar observations. To evaluate the potential value of cloud-top temperature observations for data assimilation, an imperfect-model observing system simulation experiment is used. Synthetic cloud-top temperature observations from an idealized splitting supercell created using the Weather Research and Forecasting Model are assimilated along with synthetic radar reflectivity and radial velocity using an ensemble Kalman filter. Observations are assimilated every 5 min for 2.5 h with additive noise used to maintain ensemble spread.

Four experiments are conducted to explore the relative value of cloud-top temperature and radar observations. One experiment only assimilates satellite data, another only assimilates radar data, and two more experiments assimilate both radar and satellite observations, but with the observation types assimilated in different order. Results show a rather weak correlation between cloud-top temperature and horizontal winds, whereas larger correlations are found between cloud-top temperature and microphysics variables. However, the assimilation of cloud-top temperature data alone produces a supercell storm in the ensemble, although the resulting ensemble has much larger spread compared to the ensembles of radar inclusive experiments. The addition of radar observations greatly improves the storm structure and reduces the overprediction of storm extent. Results further show that assimilating cloud-top temperature observations in addition to radar data does not lead to an improved forecast. However, assimilating cloud-top temperature can produce reasonable forecasts for areas lacking radar coverage.

Full access
Aaron Johnson
,
Xuguang Wang
,
Ming Xue
, and
Fanyou Kong

Abstract

Twenty-member real-time convection-allowing storm-scale ensemble forecasts with perturbations to model physics, dynamics, initial conditions (IC), and lateral boundary conditions (LBC) during the NOAA Hazardous Weather Testbed Spring Experiment provide a unique opportunity to study the relative impact of different sources of perturbation on convection-allowing ensemble diversity. In Part II of this two-part study, systematic similarity/dissimilarity of hourly precipitation forecasts among ensemble members from the spring season of 2009 are identified using hierarchical cluster analysis (HCA) with a fuzzy object-based threat score (OTS), developed in . In addition to precipitation, HCA is also performed on ensemble forecasts using the traditional Euclidean distance for wind speed at 10 m and 850 hPa, and temperature at 500 hPa.

At early lead times (3 h, valid at 0300 UTC) precipitation forecasts cluster primarily by data assimilation and model dynamic core, indicating a dominating impact of models, with secondary clustering by microphysics. There is an increasing impact of the planetary boundary layer (PBL) scheme on clustering relative to the microphysics scheme at later lead times. Forecasts of 10-m wind speed cluster primarily by the PBL scheme at early lead times, with an increasing impact of LBC at later lead times. Forecasts of midtropospheric variables cluster primarily by IC at early lead times and LBC at later lead times. The radar and Mesonet data assimilation (DA) show its impact, with members without DA in a distinct cluster, through the 12-h lead time (valid at 1200 UTC) for both precipitation and nonprecipitation variables. The implication for optimal ensemble design for storm-scale forecasts is also discussed.

Full access
Mohamad El Gharamti
,
Kevin Raeder
,
Jeffrey Anderson
, and
Xuguang Wang

Abstract

Sampling errors and model errors are major drawbacks from which ensemble Kalman filters suffer. Sampling errors arise because of the use of a limited ensemble size, while model errors are deficiencies in the dynamics and underlying parameterizations that may yield biases in the model’s prediction. In this study, we propose a new time-adaptive posterior inflation algorithm in which the analyzed ensemble anomalies are locally inflated. The proposed inflation strategy is computationally efficient and is aimed at restoring enough spread in the analysis ensemble after assimilating the observations. The performance of this scheme is tested against the relaxation to prior spread (RTPS) and adaptive prior inflation. For this purpose, two model are used: the three-variable Lorenz 63 system and the Community Atmosphere Model (CAM). In CAM, global refractivity, temperature, and wind observations from several sources are incorporated to perform a set of assimilation experiments using the Data Assimilation Research Testbed (DART). The proposed scheme is shown to yield better quality forecasts than the RTPS. Assimilation results further suggest that when model errors are small, both prior and posterior inflation are able to mitigate sampling errors with a slight advantage to posterior inflation. When large model errors, such as wind and temperature biases, are present, prior inflation is shown to be more accurate than posterior inflation. Densely observed regions as in the Northern Hemisphere present numerous challenges to the posterior inflation algorithm. A compelling enhancement to the performance of the filter is achieved by combining both adaptive inflation schemes.

Open access
Xu Lu
,
Xuguang Wang
,
Mingjing Tong
, and
Vijay Tallapragada

Abstract

A Gridpoint Statistical Interpolation analysis system (GSI)-based, continuously cycled, dual-resolution hybrid ensemble Kalman filter–variational (EnKF-Var) data assimilation (DA) system is developed for the Hurricane Weather Research and Forecasting (HWRF) Model. In this system, a directed moving nest strategy is developed to solve the issue of nonoverlapped domains for cycled ensemble DA. Additionally, both dual-resolution and four-dimensional ensemble–variational (4DEnVar) capabilities are implemented. Vortex modification (VM) and relocation (VR) are used in addition to hybrid DA. Several scientific questions are addressed using the new system for Hurricane Edouard (2014). It is found that dual-resolution hybrid DA improves the analyzed storm structure and short-term maximum wind speed (Vmax) and minimum sea level pressure (MSLP) forecasts compared to coarser, single-resolution hybrid DA, but track and radius of maximum wind (RMW) forecasts do not improve. Additionally, applying VR and VM on the control background before DA improves the analyzed storm, overall track, RMW, MSLP, and Vmax forecasts. Further applying VR on the ensemble background improves the analyzed storm and forecast biases for MSLP and Vmax. Also, using 4DEnVar to assimilate tail Doppler radar (TDR) data improves the analyzed storm and short-term MSLP and Vmax forecasts compared to three-dimensional ensemble–variational (3DEnVar) although 4DEnVar slightly degrades the track forecast. Finally, the new system improves overall RMW, MSLP, and Vmax forecasts upon the operational HWRF, while no improvement on track is found. The intensity forecast improvement during the intensifying period is due to the better analyzed structures for an intensifying storm.

Full access
Aaron Johnson
,
Xuguang Wang
,
Fanyou Kong
, and
Ming Xue

Abstract

Convection-allowing ensemble forecasts with perturbations to model physics, dynamics, and initial (IC) and lateral boundary conditions (LBC) generated by the Center for the Analysis and Prediction of Storms for the NOAA Hazardous Weather Testbed (HWT) Spring Experiments provide a unique opportunity to understand the relative impact of different sources of perturbation on convection-allowing ensemble diversity. Such impacts are explored in this two-part study through an object-oriented hierarchical cluster analysis (HCA) technique.

In this paper, an object-oriented HCA algorithm, where the dissimilarity of precipitation forecasts is quantified with a nontraditional object-based threat score (OTS), is developed. The advantages of OTS-based HCA relative to HCA using traditional Euclidean distance and neighborhood probability-based Euclidean distance (NED) as dissimilarity measures are illustrated by hourly accumulated precipitation ensemble forecasts during a representative severe weather event.

Clusters based on OTS and NED are more consistent with subjective evaluation than clusters based on traditional Euclidean distance because of the sensitivity of Euclidean distance to small spatial displacements. OTS improves the clustering further compared to NED. Only OTS accounts for important features of precipitation areas, such as shape, size, and orientation, and OTS is less sensitive than NED to precise spatial location and precipitation amount. OTS is further improved by using a fuzzy matching method. Application of OTS-based HCA for regional subdomains is also introduced. Part II uses the HCA method developed in this paper to explore systematic clustering of the convection-allowing ensemble during the full 2009 HWT Spring Experiment period.

Full access
Aaron Johnson
,
Xuguang Wang
,
Kevin R. Haghi
, and
David B. Parsons

Abstract

This paper presents a case study from an intensive observing period (IOP) during the Plains Elevated Convection at Night (PECAN) field experiment that was focused on a bore generated by nocturnal convection. Observations from PECAN IOP 25 on 11 July 2015 are used to evaluate the performance of high-resolution Weather Research and Forecasting Model forecasts, initialized using the Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter. The focus is on understanding model errors and sensitivities in order to guide forecast improvements for bores associated with nocturnal convection. Model simulations of the bore amplitude are compared against eight retrieved vertical cross sections through the bore during the IOP. Sensitivities of forecasts to microphysics and planetary boundary layer (PBL) parameterizations are also investigated. Forecasts initialized before the bore pulls away from the convection show a more realistic bore than forecasts initialized later from analyses of the bore itself, in part due to the smoothing of the existing bore in the ensemble mean. Experiments show that the different microphysics schemes impact the quality of the simulations with unrealistically weak cold pools and bores with the Thompson and Morrison microphysics schemes, cold pools too strong with the WDM6 and more accurate with the WSM6 schemes. Most PBL schemes produced a realistic bore response to the cold pool, with the exception of the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, which creates too much turbulent mixing atop the bore. A new method of objectively estimating the depth of the near-surface stable layer corresponding to a simple two-layer model is also introduced, and the impacts of turbulent mixing on this estimate are discussed.

Full access
Sijie Pan
,
Jidong Gao
,
Thomas A. Jones
,
Yunheng Wang
,
Xuguang Wang
, and
Jun Li

Abstract

With the launch of GOES-16 in November 2016, effective utilization of its data in convective-scale numerical weather prediction (NWP) has the potential to improve high-impact weather (HIWeather) forecasts. In this study, the impact of satellite-derived layered precipitable water (LPW) and cloud water path (CWP) in addition to NEXRAD observations on short-term convective-scale NWP forecasts are examined using three severe weather cases that occurred in May 2017. In each case, satellite-derived CWP and LPW products and radar observations are assimilated into the Advanced Research Weather Research and Forecasting (WRF-ARW) Model using the NSSL hybrid Warn-on-Forecast (WoF) analysis and forecast system. The system includes two components: the GSI-EnKF system and a deterministic 3DEnVAR system. This study examines deterministic 0–6-h forecasts launched from the hybrid 3DEnVAR analyses for the three severe weather events. Three types of experiments are conducted and compared: (i) the control experiment (CTRL) without assimilating any data, (ii) the radar experiment (RAD) with the assimilation of radar and surface observations, and (iii) the satellite experiment (RADSAT) with the assimilation of all observations including surface-, radar-, and satellite-derived CWP and LPW. The results show that assimilating additional GOES products improves short-range forecasts by providing more accurate initial conditions, especially for moisture and temperature variables.

Full access
Aaron Johnson
,
Xuguang Wang
,
Yongming Wang
,
Anthony Reinhart
,
Adam J. Clark
, and
Israel L. Jirak

Abstract

An object-based probabilistic (OBPROB) forecasting framework is developed and applied, together with a more traditional neighborhood-based framework, to convection-permitting ensemble forecasts produced by the University of Oklahoma (OU) Multiscale data Assimilation and Predictability (MAP) laboratory during the 2017 and 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiments. Case studies from 2017 are used for parameter tuning and demonstration of methodology, while the 2018 ensemble forecasts are systematically verified. The 2017 case study demonstrates that the OBPROB forecast product can provide a unique tool to operational forecasters that includes convective-scale details such as storm mode and morphology, which are typically lost in neighborhood-based methods, while also providing quantitative ensemble probabilistic guidance about those details in a more easily interpretable format than the more commonly used paintball plots. The case study also demonstrates that objective verification metrics reveal different relative performance of the ensemble at different forecast lead times depending on the verification framework (i.e., object versus neighborhood) because of the different features emphasized by object- and neighborhood-based evaluations. Both frameworks are then used for a systematic evaluation of 26 forecasts from the spring of 2018. The OBPROB forecast verification as configured in this study shows less sensitivity to forecast lead time than the neighborhood forecasts. Both frameworks indicate a need for probabilistic calibration to improve ensemble reliability. However, lower ensemble discrimination for OBPROB than the neighborhood-based forecasts is also noted.

Full access
Thomas A. Jones
,
Xuguang Wang
,
Patrick Skinner
,
Aaron Johnson
, and
Yongming Wang

Abstract

A prototype convection-allowing system using the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model and employing an ensemble Kalman filter (EnKF) data assimilation technique has been developed and used during the spring 2016 and 2017 Hazardous Weather Testbeds. This system assimilates WSR-88D reflectivity and radial velocity, geostationary satellite cloud water path (CWP) retrievals, and available surface observations over a regional domain with a 3-km horizontal resolution at 15-min intervals, with 3-km initial conditions provided by an experimental High-Resolution Rapid Refresh ensemble (HRRR-e). However, no information on upper-level thermodynamic conditions in cloud-free regions is currently assimilated, as few timely observations exist. One potential solution is to also assimilate clear-sky satellite radiances, which provide information on mid- and upper-tropospheric temperature and moisture conditions. This research assimilates GOES-13 imager water vapor band (6.5 μm) radiances using the GSI-EnKF system to take advantage of the Community Radiative Transfer Model (CRTM) integration. Results using four cases from May 2016 showed that assimilating radiances generally had a neutral-to-positive impact on the model analysis, reducing humidity bias and/or errors at the appropriate model levels where verification observations were present. The effects on high-impact weather forecasts, as verified against forecast reflectivity and updraft helicity, were mixed. Three cases (9, 22, and 24 May) showed some improvement in skill, while the other (25 May) performed worse, despite the improved environment. This research represents the first step in designing a high-resolution ensemble data assimilation system to use GOES-16 Advanced Baseline Imager data, which provides additional water vapor bands and increased spatial and temporal resolution.

Full access
Aaron Johnson
,
Xuguang Wang
,
Yongming Wang
,
Anthony Reinhart
,
Adam J. Clark
, and
Israel L. Jirak

Abstract

An object-based probabilistic (OBPROB) forecasting framework is developed and applied, together with a more traditional neighborhood-based framework, to convection-permitting ensemble forecasts produced by the University of Oklahoma (OU) Multiscale data Assimilation and Predictability (MAP) laboratory during the 2017 and 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiments. Case studies from 2017 are used for parameter tuning and demonstration of methodology, while the 2018 ensemble forecasts are systematically verified. The 2017 case study demonstrates that the OBPROB forecast product can provide a unique tool to operational forecasters that includes convective-scale details such as storm mode and morphology, which are typically lost in neighborhood-based methods, while also providing quantitative ensemble probabilistic guidance about those details in a more easily interpretable format than the more commonly used paintball plots. The case study also demonstrates that objective verification metrics reveal different relative performance of the ensemble at different forecast lead times depending on the verification framework (i.e., object versus neighborhood) because of the different features emphasized by object- and neighborhood-based evaluations. Both frameworks are then used for a systematic evaluation of 26 forecasts from the spring of 2018. The OBPROB forecast verification as configured in this study shows less sensitivity to forecast lead time than the neighborhood forecasts. Both frameworks indicate a need for probabilistic calibration to improve ensemble reliability. However, lower ensemble discrimination for OBPROB than the neighborhood-based forecasts is also noted.

Free access