Search Results
You are looking at 51 - 60 of 60 items for
- Author or Editor: Yi Jin x
- Refine by Access: All Content x
Abstract
The ocean–atmosphere coupling in the northeastern subtropical Pacific is dominated by a Pacific meridional mode (PMM), which spans between the extratropical and tropical Pacific and plays an important role in connecting extratropical climate variability to the occurrence of El Niño. Analyses of observational data and numerical model experiments were conducted to demonstrate that the PMM (and the subtropical Pacific coupling) experienced a rapid strengthening in the early 1990s and that this strengthening is related to an intensification of the subtropical Pacific high caused by a phase change of the Atlantic multidecadal oscillation (AMO). This PMM strengthening favored the development of more central Pacific (CP)-type El Niño events. The recent shift from more conventional eastern Pacific (EP) to more CP-type El Niño events can thus be at least partly understood as a Pacific Ocean response to a phase change in the AMO.
Abstract
The ocean–atmosphere coupling in the northeastern subtropical Pacific is dominated by a Pacific meridional mode (PMM), which spans between the extratropical and tropical Pacific and plays an important role in connecting extratropical climate variability to the occurrence of El Niño. Analyses of observational data and numerical model experiments were conducted to demonstrate that the PMM (and the subtropical Pacific coupling) experienced a rapid strengthening in the early 1990s and that this strengthening is related to an intensification of the subtropical Pacific high caused by a phase change of the Atlantic multidecadal oscillation (AMO). This PMM strengthening favored the development of more central Pacific (CP)-type El Niño events. The recent shift from more conventional eastern Pacific (EP) to more CP-type El Niño events can thus be at least partly understood as a Pacific Ocean response to a phase change in the AMO.
Abstract
Following the interdecadal shift of El Niño–Southern Oscillation (ENSO) properties that occurred in 1976/77, another regime shift happened in 1999/2000 that featured a decrease of variability and an increase in ENSO frequency. Specifically, the frequency spectrum of Niño-3.4 sea surface temperature shifted from dominant variations at quasi-quadrennial (~4 yr) periods during 1979–99 to weaker fluctuations at quasi-biennial (~2 yr) periods during 2000–18. Also, the spectrum of warm water volume (WWV) index had almost no peak in 2000–18, implying a nearly white noise process. The regime shift was associated with an enhanced zonal gradient of the mean state, a westward shift in the atmosphere–ocean coupling in the tropical Pacific, and an increase in the static stability of the troposphere. This shift had several important implications. The whitening of the subsurface ocean temperature led to a breakdown of the relationship between WWV and ENSO, reducing the efficacy of WWV as a key predictor for ENSO and thus leading to a decrease in ENSO prediction skill. Another consequence of the higher ENSO frequency after 1999/2000 was that the forecasted peak of sea surface temperature anomaly often lagged that observed by several months, and the lag increased with the lead time. The ENSO regime shift may have altered ENSO influences on extratropical climate. Thus, the regime shift of ENSO in 1999/2000 as well as the model default may account for the higher false alarm and lower skill in predicting ENSO since 1999/2000.
Abstract
Following the interdecadal shift of El Niño–Southern Oscillation (ENSO) properties that occurred in 1976/77, another regime shift happened in 1999/2000 that featured a decrease of variability and an increase in ENSO frequency. Specifically, the frequency spectrum of Niño-3.4 sea surface temperature shifted from dominant variations at quasi-quadrennial (~4 yr) periods during 1979–99 to weaker fluctuations at quasi-biennial (~2 yr) periods during 2000–18. Also, the spectrum of warm water volume (WWV) index had almost no peak in 2000–18, implying a nearly white noise process. The regime shift was associated with an enhanced zonal gradient of the mean state, a westward shift in the atmosphere–ocean coupling in the tropical Pacific, and an increase in the static stability of the troposphere. This shift had several important implications. The whitening of the subsurface ocean temperature led to a breakdown of the relationship between WWV and ENSO, reducing the efficacy of WWV as a key predictor for ENSO and thus leading to a decrease in ENSO prediction skill. Another consequence of the higher ENSO frequency after 1999/2000 was that the forecasted peak of sea surface temperature anomaly often lagged that observed by several months, and the lag increased with the lead time. The ENSO regime shift may have altered ENSO influences on extratropical climate. Thus, the regime shift of ENSO in 1999/2000 as well as the model default may account for the higher false alarm and lower skill in predicting ENSO since 1999/2000.
Abstract
The impact of ice phase cloud microphysical processes on prediction of tropical cyclone environment is examined for two microphysical parameterizations using the Coupled Ocean–Atmosphere Mesoscale Prediction System–Tropical Cyclone (COAMPS-TC) model. An older version of microphysical parameterization is a relatively typical single-moment scheme with five hydrometeor species: cloud water and ice, rain, snow, and graupel. An alternative newer method uses a hybrid approach of double moment in cloud ice and rain and single moment in the other three species. Basin-scale synoptic flow simulations point to important differences between these two schemes. The upper-level cloud ice concentrations produced by the older scheme are up to two orders of magnitude greater than the newer scheme, primarily due to differing assumptions concerning the ice nucleation parameterization. Significant (1°–2°C) warm biases near the 300-hPa level in the control experiments are not present using the newer scheme. The warm bias in the control simulations is associated with the longwave radiative heating near the base of the cloud ice layer. The two schemes produced different track and intensity forecasts for 15 Atlantic storms. Rightward cross-track bias and positive intensity bias in the control forecasts are significantly reduced using the newer scheme. Synthetic satellite imagery of Hurricane Igor (2010) shows more realistic brightness temperatures from the simulations using the newer scheme, in which the inner core structure is clearly discernible. Applying the synthetic satellite imagery in both quantitative and qualitative analyses helped to pinpoint the issue of excessive upper-level cloud ice in the older scheme.
Abstract
The impact of ice phase cloud microphysical processes on prediction of tropical cyclone environment is examined for two microphysical parameterizations using the Coupled Ocean–Atmosphere Mesoscale Prediction System–Tropical Cyclone (COAMPS-TC) model. An older version of microphysical parameterization is a relatively typical single-moment scheme with five hydrometeor species: cloud water and ice, rain, snow, and graupel. An alternative newer method uses a hybrid approach of double moment in cloud ice and rain and single moment in the other three species. Basin-scale synoptic flow simulations point to important differences between these two schemes. The upper-level cloud ice concentrations produced by the older scheme are up to two orders of magnitude greater than the newer scheme, primarily due to differing assumptions concerning the ice nucleation parameterization. Significant (1°–2°C) warm biases near the 300-hPa level in the control experiments are not present using the newer scheme. The warm bias in the control simulations is associated with the longwave radiative heating near the base of the cloud ice layer. The two schemes produced different track and intensity forecasts for 15 Atlantic storms. Rightward cross-track bias and positive intensity bias in the control forecasts are significantly reduced using the newer scheme. Synthetic satellite imagery of Hurricane Igor (2010) shows more realistic brightness temperatures from the simulations using the newer scheme, in which the inner core structure is clearly discernible. Applying the synthetic satellite imagery in both quantitative and qualitative analyses helped to pinpoint the issue of excessive upper-level cloud ice in the older scheme.
Abstract
High-impact Typhoon Morakot (2009) was investigated using a multiply nested regional tropical cyclone prediction model. In the numerical simulations, the horizontal grid spacing, cumulus parameterizations, and microphysical parameterizations were varied, and the sensitivity of the track, intensity, and quantitative precipitation forecasts (QPFs) was examined. With regard to horizontal grid spacing, it is found that convective-permitting (5 km) resolution is necessary for a reasonably accurate QPF, while little benefit is gained through the use of a fourth domain at 1.67-km horizontal resolution. Significant sensitivity of the track forecast was found to the cumulus parameterization, which impacted the model QPFs. In particular, the simplified Arakawa–Schubert parameterization tended to erroneously regenerate the remnants of Tropical Storm Goni to the southwest of Morakot, affecting the large-scale steering flow and the track of Morakot. Strong sensitivity of the QPFs to the microphysical parameterization was found, with the track and intensity showing little sensitivity. It is also found that Morakot’s accumulated precipitation was reasonably predictable, with the control simulation producing an equitable threat score of 0.56 for the 3-day accumulated precipitation using a threshold of 500 mm. This high predictability of precipitation is due in part to more predictable large-scale and topographic forcing.
Abstract
High-impact Typhoon Morakot (2009) was investigated using a multiply nested regional tropical cyclone prediction model. In the numerical simulations, the horizontal grid spacing, cumulus parameterizations, and microphysical parameterizations were varied, and the sensitivity of the track, intensity, and quantitative precipitation forecasts (QPFs) was examined. With regard to horizontal grid spacing, it is found that convective-permitting (5 km) resolution is necessary for a reasonably accurate QPF, while little benefit is gained through the use of a fourth domain at 1.67-km horizontal resolution. Significant sensitivity of the track forecast was found to the cumulus parameterization, which impacted the model QPFs. In particular, the simplified Arakawa–Schubert parameterization tended to erroneously regenerate the remnants of Tropical Storm Goni to the southwest of Morakot, affecting the large-scale steering flow and the track of Morakot. Strong sensitivity of the QPFs to the microphysical parameterization was found, with the track and intensity showing little sensitivity. It is also found that Morakot’s accumulated precipitation was reasonably predictable, with the control simulation producing an equitable threat score of 0.56 for the 3-day accumulated precipitation using a threshold of 500 mm. This high predictability of precipitation is due in part to more predictable large-scale and topographic forcing.
Abstract
Interactions between the upper-level outflow of a sheared, rapidly intensifying tropical cyclone (TC) and the background environmental flow in an idealized model are presented. The most important finding is that the divergent outflow from convection localized by the tilt of the vortex serves to divert the background environmental flow around the TC, thus reducing the local vertical wind shear. We show that this effect can be understood from basic theoretical arguments related to Bernoulli flow around an obstacle. In the simulation discussed, the environmental flow diversion by the outflow is limited to 2 km below the tropopause in the 12–14-km (250–150 hPa) layer. Synthetic water vapor satellite imagery confirms the presence of upshear arcs in the cloud field, matching satellite observations. These arcs, which exist in the same layer as the outflow, are caused by slow-moving wave features and serve as visual markers of the outflow–environment interface. The blocking effect where the outflow and the environmental winds meet creates a dynamic high pressure whose pressure gradient extends nearly 1000 km upwind, thus causing the environmental winds to slow down, to converge, and to sink. We discuss these results with respect to the first part of this three-part study, and apply them to another atypical rapid intensification hurricane: Matthew (2016).
Abstract
Interactions between the upper-level outflow of a sheared, rapidly intensifying tropical cyclone (TC) and the background environmental flow in an idealized model are presented. The most important finding is that the divergent outflow from convection localized by the tilt of the vortex serves to divert the background environmental flow around the TC, thus reducing the local vertical wind shear. We show that this effect can be understood from basic theoretical arguments related to Bernoulli flow around an obstacle. In the simulation discussed, the environmental flow diversion by the outflow is limited to 2 km below the tropopause in the 12–14-km (250–150 hPa) layer. Synthetic water vapor satellite imagery confirms the presence of upshear arcs in the cloud field, matching satellite observations. These arcs, which exist in the same layer as the outflow, are caused by slow-moving wave features and serve as visual markers of the outflow–environment interface. The blocking effect where the outflow and the environmental winds meet creates a dynamic high pressure whose pressure gradient extends nearly 1000 km upwind, thus causing the environmental winds to slow down, to converge, and to sink. We discuss these results with respect to the first part of this three-part study, and apply them to another atypical rapid intensification hurricane: Matthew (2016).
Abstract
Devastating Japan in October 2019, Supertyphoon (STY) Hagibis was an important typhoon in the history of the Pacific. A striking feature of Hagibis was its explosive rapid intensification (RI). In 24 h, Hagibis intensified by 100 knots (kt; 1 kt ≈ 0.51 m s−1), making it one of the fastest-intensifying typhoons ever observed. After RI, Hagibis’s intensification stalled. Using the current typhoon intensity record holder, i.e., STY Haiyan (2013), as a benchmark, this work explores the intensity evolution differences of these two high-impact STYs. We found that the extremely high prestorm sea surface temperature reaching 30.5°C, deep/warm prestorm ocean heat content reaching 160 kJ cm−2, fast forward storm motion of ∼8 m s−1, small during-storm ocean cooling effect of ∼0.5°C, significant thunderstorm activity at its center, and rapid eyewall contraction were all important contributors to Hagibis’s impressive intensification. There was 36% more air–sea flux for Hagibis’s RI than for Haiyan’s. After its spectacular RI, Hagibis’s intensification stopped, despite favorable environments. Haiyan, by contrast, continued to intensify, reaching its record-breaking intensity of 170 kt. A key finding here is the multiple pathways that storm size affected the intensity evolution for both typhoons. After RI, Hagibis experienced a major size expansion, becoming the largest typhoon on record in the Pacific. This size enlargement, combined with a reduction in storm translational speed, induced stronger ocean cooling that reduced ocean flux and hindered intensification. The large storm size also contributed to slower eyewall replacement cycles (ERCs), which prolonged the negative impact of the ERC on intensification.
Abstract
Devastating Japan in October 2019, Supertyphoon (STY) Hagibis was an important typhoon in the history of the Pacific. A striking feature of Hagibis was its explosive rapid intensification (RI). In 24 h, Hagibis intensified by 100 knots (kt; 1 kt ≈ 0.51 m s−1), making it one of the fastest-intensifying typhoons ever observed. After RI, Hagibis’s intensification stalled. Using the current typhoon intensity record holder, i.e., STY Haiyan (2013), as a benchmark, this work explores the intensity evolution differences of these two high-impact STYs. We found that the extremely high prestorm sea surface temperature reaching 30.5°C, deep/warm prestorm ocean heat content reaching 160 kJ cm−2, fast forward storm motion of ∼8 m s−1, small during-storm ocean cooling effect of ∼0.5°C, significant thunderstorm activity at its center, and rapid eyewall contraction were all important contributors to Hagibis’s impressive intensification. There was 36% more air–sea flux for Hagibis’s RI than for Haiyan’s. After its spectacular RI, Hagibis’s intensification stopped, despite favorable environments. Haiyan, by contrast, continued to intensify, reaching its record-breaking intensity of 170 kt. A key finding here is the multiple pathways that storm size affected the intensity evolution for both typhoons. After RI, Hagibis experienced a major size expansion, becoming the largest typhoon on record in the Pacific. This size enlargement, combined with a reduction in storm translational speed, induced stronger ocean cooling that reduced ocean flux and hindered intensification. The large storm size also contributed to slower eyewall replacement cycles (ERCs), which prolonged the negative impact of the ERC on intensification.
Abstract
Tropical deforestation can result in substantial changes in local surface energy and water budgets, and thus in atmospheric stability. These effects may in turn yield changes in precipitation. The Maritime Continent (MC) has undergone severe deforestation during the past few decades but it has received less attention than the deforestation in the Amazon and Congo rain forests. In this study, numerical deforestation experiments are conducted with global (i.e., Community Earth System Model) and regional climate models (i.e., Regional Climate Model version 4.6) to investigate precipitation responses to MC deforestation. The results show that the deforestation in the MC region leads to increases in both surface temperature and local precipitation. Atmospheric moisture budget analysis reveals that the enhanced precipitation is associated more with the dynamic component than with the thermodynamic component of the vertical moisture advection term. Further analyses on the vertical profile of moist static energy indicate that the atmospheric instability over the deforested areas is increased as a result of anomalous moistening at approximately 800–850 hPa and anomalous warming extending from the surface to 750 hPa. This instability favors ascending air motions, which enhance low-level moisture convergence. Moreover, the vertical motion increases associated with the MC deforestation are comparable to those generated by La Niña events. These findings offer not only mechanisms to explain the local climatic responses to MC deforestation but also insights into the possible reasons for disagreements among climate models in simulating the precipitation responses.
Abstract
Tropical deforestation can result in substantial changes in local surface energy and water budgets, and thus in atmospheric stability. These effects may in turn yield changes in precipitation. The Maritime Continent (MC) has undergone severe deforestation during the past few decades but it has received less attention than the deforestation in the Amazon and Congo rain forests. In this study, numerical deforestation experiments are conducted with global (i.e., Community Earth System Model) and regional climate models (i.e., Regional Climate Model version 4.6) to investigate precipitation responses to MC deforestation. The results show that the deforestation in the MC region leads to increases in both surface temperature and local precipitation. Atmospheric moisture budget analysis reveals that the enhanced precipitation is associated more with the dynamic component than with the thermodynamic component of the vertical moisture advection term. Further analyses on the vertical profile of moist static energy indicate that the atmospheric instability over the deforested areas is increased as a result of anomalous moistening at approximately 800–850 hPa and anomalous warming extending from the surface to 750 hPa. This instability favors ascending air motions, which enhance low-level moisture convergence. Moreover, the vertical motion increases associated with the MC deforestation are comparable to those generated by La Niña events. These findings offer not only mechanisms to explain the local climatic responses to MC deforestation but also insights into the possible reasons for disagreements among climate models in simulating the precipitation responses.
Abstract
El Niño–Southern Oscillation (ENSO) is a naturally occurring mode of tropical Pacific variability, with global impacts on society and natural ecosystems. While it has long been known that El Niño events display a diverse range of amplitudes, triggers, spatial patterns, and life cycles, the realization that ENSO’s impacts can be highly sensitive to this event-to-event diversity is driving a renewed interest in the subject. This paper surveys our current state of knowledge of ENSO diversity, identifies key gaps in understanding, and outlines some promising future research directions.
Abstract
El Niño–Southern Oscillation (ENSO) is a naturally occurring mode of tropical Pacific variability, with global impacts on society and natural ecosystems. While it has long been known that El Niño events display a diverse range of amplitudes, triggers, spatial patterns, and life cycles, the realization that ENSO’s impacts can be highly sensitive to this event-to-event diversity is driving a renewed interest in the subject. This paper surveys our current state of knowledge of ENSO diversity, identifies key gaps in understanding, and outlines some promising future research directions.
Abstract
The Operational Multiscale Environment model with Grid Adaptivity (OMEGA) is an atmospheric simulation system that links the latest methods in computational fluid dynamics and high-resolution gridding technologies with numerical weather prediction. In the fall of 1999, OMEGA was used for the first time to examine the structure and evolution of a hurricane (Floyd, 1999). The first simulation of Floyd was conducted in an operational forecast mode; additional simulations exploiting both the static as well as the dynamic grid adaptation options in OMEGA were performed later as part of a sensitivity–capability study. While a horizontal grid resolution ranging from about 120 km down to about 40 km was employed in the operational run, resolutions down to about 15 km were used in the sensitivity study to explicitly model the structure of the inner core. All the simulations produced very similar storm tracks and reproduced the salient features of the observed storm such as the recurvature off the Florida coast with an average 48-h position error of 65 km. In addition, OMEGA predicted the landfall near Cape Fear, North Carolina, with an accuracy of less than 100 km up to 96 h in advance. It was found that a higher resolution in the eyewall region of the hurricane, provided by dynamic adaptation, was capable of generating better-organized cloud and flow fields and a well-defined eye with a central pressure lower than the environment by roughly 50 mb. Since that time, forecasts were performed for a number of other storms including Georges (1998) and six 2000 storms (Tropical Storms Beryl and Chris, Hurricanes Debby and Florence, Tropical Storm Helene, and Typhoon Xangsane). The OMEGA mean track error for all of these forecasts of 101, 140, and 298 km at 24, 48, and 72 h, respectively, represents a significant improvement over the National Hurricane Center (NHC) 1998 average of 156, 268, and 374 km, respectively. In a direct comparison with the GFDL model, OMEGA started with a considerably larger position error yet came within 5% of the GFDL 72-h track error. This paper details the simulations produced and documents the results, including a comparison of the OMEGA forecasts against satellite data, observed tracks, reported pressure lows and maximum wind speed, and the rainfall distribution over land.
Abstract
The Operational Multiscale Environment model with Grid Adaptivity (OMEGA) is an atmospheric simulation system that links the latest methods in computational fluid dynamics and high-resolution gridding technologies with numerical weather prediction. In the fall of 1999, OMEGA was used for the first time to examine the structure and evolution of a hurricane (Floyd, 1999). The first simulation of Floyd was conducted in an operational forecast mode; additional simulations exploiting both the static as well as the dynamic grid adaptation options in OMEGA were performed later as part of a sensitivity–capability study. While a horizontal grid resolution ranging from about 120 km down to about 40 km was employed in the operational run, resolutions down to about 15 km were used in the sensitivity study to explicitly model the structure of the inner core. All the simulations produced very similar storm tracks and reproduced the salient features of the observed storm such as the recurvature off the Florida coast with an average 48-h position error of 65 km. In addition, OMEGA predicted the landfall near Cape Fear, North Carolina, with an accuracy of less than 100 km up to 96 h in advance. It was found that a higher resolution in the eyewall region of the hurricane, provided by dynamic adaptation, was capable of generating better-organized cloud and flow fields and a well-defined eye with a central pressure lower than the environment by roughly 50 mb. Since that time, forecasts were performed for a number of other storms including Georges (1998) and six 2000 storms (Tropical Storms Beryl and Chris, Hurricanes Debby and Florence, Tropical Storm Helene, and Typhoon Xangsane). The OMEGA mean track error for all of these forecasts of 101, 140, and 298 km at 24, 48, and 72 h, respectively, represents a significant improvement over the National Hurricane Center (NHC) 1998 average of 156, 268, and 374 km, respectively. In a direct comparison with the GFDL model, OMEGA started with a considerably larger position error yet came within 5% of the GFDL 72-h track error. This paper details the simulations produced and documents the results, including a comparison of the OMEGA forecasts against satellite data, observed tracks, reported pressure lows and maximum wind speed, and the rainfall distribution over land.
Abstract
This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.
Abstract
This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.