Search Results

You are looking at 61 - 70 of 225 items for

  • Author or Editor: Bin Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Qinghua Ding and Bin Wang

Abstract

Extreme active and break phases of the Indian summer monsoon (ISM) often bring about devastating floods and severe draughts. Here it is shown that these extreme phases exhibit distinctive precursory circulation conditions in both the tropics and extratropics over a range of antecedent periods. The extremely active monsoon over northern India is preceded by a strengthening of the upper-tropospheric central Asian high and enhancement of the tropical convection over the equatorial Indian Ocean and the South China Sea. The concurrent buildup of the anomalous high over central Asia and the arrival of tropical convection over northern India increase the likelihood of occurrence of a heavy rainy period there. Similarly, the concurrent anomalous low over central Asia and the arrival of suppressed convection originating from the equatorial Indian Ocean and the South China Sea precede extremely strong monsoon breaks over northern India. Two predictors can be used to predict the extreme active/break phases of the northern ISM: normalized 200-hPa geopotential height over central Asia and outgoing longwave radiation over southern India. Once the mean of the two predictors exceeds a threshold unit (1.0), an extreme phase is anticipated to occur over northern India after 4–5 days and reach peak intensity after an additional 2 days. In general, an event forecast by this simple scenario has a 40% probability of developing into an extreme phase, which is normally a small probability event (a less than 4% occurrence).

Full access
Takio Murakami and Bin Wang

Abstract

Along the equator, annual mean 200-mb zonal wind is approximately in phase with annual mean outgoing longwave radiation (OLR); namely, easterlies are strongest above the convective center over the maritime continent, while westerlies reach their maximum just above the dry zone over the equatorial Pacific. This is much different from what is anticipated by theories that predict that the phase of the upper-tropospheric zonal wind is in quadrature with that of the prescribed heating. The present study provides evidence that the midlatitude-equatorial coupling is primarily responsible for the maintenance of the annual mean total 200-mb zonal winds along the equator, whereas convection contributes a great deal to the annual mean upper-level equatorial divergent winds. Annual cycles occurring over the extratropics act as a transient eddy forcing of the equatorial annual mean 200-mb zonal wind through three-dimensional convergence of localized Eliassen-Palm (E-P) fluxes. They are acting to accelerate the 200-mb annual mean westerlies (easterlies) over the equatorial eastern Pacific (Indian Ocean) where E-P fluxes are horizontally divergent (convergent). The baroclinic contribution, acting through the meridional heat flux due to annual cycles, appears to be minimal.

The annual cycles differ remarkably between the equatorial Indian and eastern Pacific oceans. The annual cycle in the equatorial Indian Ocean is characterized by 1) the eastward phase propagation of monthly mean anomaly zonal winds with an inverse relationship between the surface and 200 mb (i.e., baroclinic structure in the vertical), and 2) the highest SST occurring about three (four) months prior to the strongest surface westerlies (minimum OLR). The annual cycle in the equatorial eastern Pacific exhibits coherent westward propagation of monthly mean anomaly SST and surface zonal winds, indicating the importance of planetary boundary-layer processes. On the other hand, the annual cycle of 200-mb equatorial zonal winds (the upper-level east-west circulation) is larger of standing wave character, while the annual cycle of OLR is of propagating wave character, implying that the equatorial convection contributes little to the annual cycle of the upper-level east-west equatorial circulation. It is shown that the annual cycle in the upper-level zonal winds over the equatorial eastern Pacific is largely controlled by a pronounced annual cycle of the 200-mb zonal wind occurring in the extratropics of each hemisphere.

Full access
Renguang Wu and Bin Wang

Abstract

Using station rainfall data and the NCEP–NCAR reanalysis, the authors investigate changes in the interannual relationship between the east Asian summer monsoon (EASM) and El Niño–Southern Oscillation (ENSO) in the late 1970s, concurrent with the Pacific climate shift. The present study focuses on decaying phases of ENSO because changes in developing phases of ENSO are less significant. Remarkable changes are found in the summer rainfall anomaly in northern China and Japan. From pre- to postshift period, the summer rainfall anomaly in eastern north China during decaying phases of El Niño changed from above to below normal, whereas that in central Japan changed from negative to normal. Consistent with this, the barotropic anticyclonic anomaly over the Japan Sea changed to cyclonic; the associated anomalous winds changed from southerly to northerly over the Yellow Sea–northeastern China and from northeasterly to northwesterly over central Japan.

The change in the ENSO–related east Asian summer circulation anomaly is attributed to changes in the location and intensity of anomalous convection over the western North Pacific (WNP) and India. After the late 1970s, the WNP convection anomaly is enhanced and shifted to higher latitudes due to increased summer mean SST in the Philippine Sea. This induces an eastward shift of an anomalous low pressure from east Asia to the North Pacific along 30°–45°N during decaying phases of El Niño. Thus, anomalous winds over northeastern China and Korea switch from southeasterly to northeasterly. Before the late 1970s, an anomalous barotropic anticyclone develops over east Asia and anomalous southerlies prevail over northeastern China during decaying phases of El Niño. This may relate to anomalous Indian convection through a zonal wave pattern along 30°–50°N. After the late 1970s, anomalous Indian convection weakens, which reduces the impact of the Indian convection on the EASM.

Full access
Hiroyuki Murakami and Bin Wang

Abstract

Possible future change in tropical cyclone (TC) activity over the North Atlantic (NA) was investigated by comparison of 25-yr simulations of the present-day climate and future change under the A1B emission scenario using a 20-km-mesh Meteorological Research Institute (MRI) and Japan Meteorological Agency (JMA) atmospheric general circulation model. The present-day simulation reproduces many essential features of observed climatology and interannual variability in TC frequency of occurrence and tracks over the NA. For the future projection, the model is driven by the sea surface temperature (SST) that includes a trend projected by the most recent Intergovernmental Panel on Climate Change (IPCC) multimodel ensemble and a year-to-year variation derived from the present-day climate. A major finding is that the future change of total TC counts in the NA is statistically insignificant, but the frequency of TC occurrence will decrease in the tropical western NA (WNA) and increase in the tropical eastern NA (ENA) and northwestern NA (NWNA). The projected change in TC tracks suggests a reduced probability of TC landfall over the southeastern United States, and an increased influence of TCs on the northeastern United States. The track changes are not due to changes of large-scale steering flows; instead, they are due to changes in TC genesis locations. The increase in TC genesis in the ENA arises from increasing background ascending motion and convective available potential energy. In contrast, the reduced TC genesis in the WNA is attributed to decreases in midtropospheric relative humidity and ascending motion caused by remotely forced anomalous descent. This finding indicates that the impact of remote dynamical forcing is greater than that of local thermodynamical forcing in the WNA. The increased frequency of TC occurrence in the NWNA is attributed to reduced vertical wind shear and the pronounced local warming of the ocean surface. These TC changes appear to be most sensitive to future change in the spatial distribution of rising SST. Given that most IPCC models project a larger increase in SST in the ENA than in the WNA, the projected eastward shift in TC genesis is likely to be robust.

Full access
Bin Wang and Xiaosu Xie

Abstract

The tropical intraseasonal oscillation (ISO) exhibits pronounced seasonality. The boreal summer ISO is more complex than its winter counterpart due to the coexistence of equatorial eastward, off-equatorial westward, and northward propagating, low-frequency modes and their interactions. Based on observational evidence and results obtained from numerical experiments, a mechanism is proposed for the boreal summer ISO in which the Northern Hemisphere summer monsoon (NHSM) circulation and moist static energy distribution play essential roles.

With a climatological July mean basic state, the life cycle of model low-frequency waves consists of four processes: an equatorial eastward propagation of a coupled Kelvin–Rossby wave packet, an emanation of moist Rossby waves in the western Pacific, a westward propagation and amplification of the Rossby waves in South Asian monsoon regions, and a reinitiation of the equatorial disturbances over the central Indian Ocean. The life cycle spans about one month and provides a mechanism for self-sustained boreal summer ISO.

Analyses of the model experiments reveal that the monsoon mean flows and spatial variation of moist static energy trap equatorial disturbances in the NHSM domain. The reduction of moist static energy over the eastern central Pacific suppresses equatorial convection, leading to disintegration of the equatorial Kelvin–Rossby wave packet and the emanation of Rossby waves in the western North Pacific. Strong easterly vertical shears and seasonally enhanced boundary layer humidity in the NHSM further amplify the Rossby waves (of the gravest meridional mode), making their structures highly asymmetric about the equator. The intensified Rossby waves start to stall and decay when approaching the Arabian Sea due to the “blocking” of the sinking dry air mass over North Africa, meanwhile triggering equatorial convection. The mean Hadley circulation plays a critical role in reinitiation of the equatorial Kelvin–Rossby wave packet over the equatorial Indian Ocean.

Full access
Bin Wang and LinHo

Abstract

To date, the monsoon-research community has not yet reached a consensus on a unified definition of monsoon rainy season or on the linkage between the onsets over the Asian continent and the adjacent oceans. A single rainfall parameter is proposed, and a suite of universal criteria for defining the domain, onset, peak, and withdrawal of the rainy season are developed. These results reveal a cohesive spatial–temporal structure of the Asian–Pacific monsoon rainy season characteristics, which will facilitate validation of monsoon hydrological cycles simulated by climate system models and improve our understanding of monsoon dynamics.

The large-scale onset of the Asian monsoon rainy season consists of two phases. The first phase begins with the rainfall surges over the South China Sea (SCS) in mid-May, which establishes a planetary-scale monsoon rainband extending from the south Asian marginal seas (the Arabian Sea, the Bay of Bengal, and the SCS) to the subtropical western North Pacific (WNP). The rainband then advances northwestward, initiating the continental Indian rainy season, the Chinese mei-yu, and the Japanese baiu in early to mid-June (the second phase). The heights of the rainy seasons occur primarily in three stepwise phases: in late June over the mei-yu/baiu regions, the northern Bay of Bengal, and the vicinity of the Philippines, in late July over India and northern China; and in mid-August over the tropical WNP. The rainy season retreats northward over east Asia, yet it moves southward over India and the WNP.

Clear distinctions in the characteristics of the rainy season exist among the Indian, east Asian, and WNP summer monsoon regions. Nevertheless, the rainy seasons of the three subsystems also show close linkage. The causes of the regional distinctions and linkages are discussed. Also discussed are the atypical monsoon rainy seasons, such as the skewed and bimodal seasonal distributions found in various places of Asian monsoon domain.

Full access
Baozhen Zhu and Bin Wang

Abstract

The tropical Indian and western Pacific oceans are two prominent action centers for tropical 30–60-day convective variability. When convection is enhanced over the equatorial Indian Ocean, the tropical western Pacific often experiences an abnormal dry condition (phase I), whereas the development of the convection over the tropical western Pacific tends to be accompanied by suppressed convection in the equatorial Indian Ocean (phase II). This convection seesaw is a fundamental characteristic of the tropical 30–60-day oscillation.

The seesaw is intimately associated with the activity of propagating low-frequency convective systems (LFCSs). Its formation process is season dependent. Typical boreal summer seesaw results from a time-lagged development of two systems: a western system that originates in the equatorial Indian Ocean and moves eastward and/or northward and an eastern system that develops in the western Pacific monsoon region and moves westward and/or northward. The boreal winter seesaw, on the other hand, is caused by the longitudinal dependence of the evolution of eastward-moving LFCSs that strongly amplify in the equatorial Indian Ocean, weaken and/or split when rapidly passing over the maritime continent, and reintensify in the South Pacific convergence zone (SPCZ).

There are two phases of the seesaw. During the first phase, the LFCSs interact with the Indian monsoon in boreal summer and Indonesian–Australian monsoon in boreal winter. Likewise, during the second phase, the LFCSs interplay with monsoon circulations over the western Pacific monsoon trough in boreal summer and over the SPCZ in boreal winter. The convection seesaw activity is closely tied to the corresponding active-break monsoon cycles over the two polar regions of the seesaw.

Full access
Yoshiyuki Kajikawa and Bin Wang

Abstract

A significant advance in the onset dates of the South China Sea summer monsoon (SCSSM) is detected around 1993/94: the epochal mean onset date is 30 May for 1979–93 and 14 May for 1994–2008. The relatively late onset during the first epoch is primarily determined by the northward seasonal march of the intertropical convergence zone, whereas the advanced onset during the second epoch is affected by the enhanced activity of northwestward-moving tropical disturbances from the equatorial western Pacific. During 1994–2008, the intraseasonal variability (ISV) over the western Pacific was enhanced during the period from mid-April to mid-May; further, the number of tropical cyclones (TCs), which passed through the South China Sea (SCS) and Philippine Sea during the same period, is about doubled compared with those occurring during 1979–93. This enhanced ISV and TC activity over the SCS and Philippine Sea are attributed to a significant increase in SST over the equatorial western Pacific from the 1980s to 2000s. Therefore, the advanced SCSSM onset is rooted in the decadal change of the SST over the equatorial western Pacific.

Full access
Guosen Chen and Bin Wang

Abstract

Well-organized eastward propagation of the Madden–Julian oscillation (MJO) is found to be accompanied by the leading suppressed convection (LSC) over the Maritime Continent (MC) and the western Pacific (WP) when the MJO convection is in the Indian Ocean (IO). However, it remains unclear how the LSC influences the MJO and what causes the LSC. The present study shows that the LSC is a prevailing precursor for eastward propagation of the MJO across the MC. The LSC enhances the coupling of IO convection and the Walker cell to its east [front Walker cell (FWC)] by increasing the zonal heating gradient. The enhanced FWC strengthens the low-level easterly, which increases boundary layer (BL) convergence and promotes congestus convection to the east of the deep convection; the enhanced congestus convection preconditions the lower to middle atmosphere, which further promotes the transition from congestus to deep convection and leads to eastward propagation of the MJO. The MJO ceases eastward propagation once the FWC decouples from it. Further analysis reveals that LSC has two major origins: one comes from the eastward propagation of the preceding IO dry phase associated with the MJO, and the other develops concurrently with the IO convection. In the latter case, the development of the LSC is brought about by a two-way interaction between the MJO’s tropical heating and the associated tropical–extratropical teleconnection: the preceding IO suppressed convection induces a tropical–extratropical teleconnection, which evolves and forms an anomalous western North Pacific cyclone that generates upper-level convergence and induces significant LSC.

Full access
Bin Wang and Zheng Fang

Abstract

Based on first principles, a theoretical model for El Niño-Southern Oscillation (ENSO) is derived that consists of prognostic equations for sea surface temperature (SST) and for thermocline variation. Considering only the large-scale, equatorially symmetric, standing basin mode yields a minimum dynamic system that highlights the cyclic, chaotic, and season-dependent evolution of ENSO.

For a steady annual mean basic state, the dynamic system exhibits a unique limit cycle solution for a fairly restricted range of air-sea coupling. The limit cycle is a stable attractor and represents an intrinsic interannual oscillation of the coupled system. The deepening (rising) of the thermocline in the eastern (western) Pacific leads eastern Pacific warming by a small fraction of the cycle, which agrees well with observation and plays a critical role in sustaining the oscillation. When the nonlinear growth of SST anomalies reaches a critical amplitude, the delayed response of thermocline adjustment provides a negative feedback, turning over warming to cooling or vice versa.

When the basic state varies annually, the limit cycle develops a strange attractor and the interannual oscillation displays inherent deterministic chaos. On the other hand, the transition phase of the oscillation tends to frequently occur in boreal spring when the basic state is most unstable. The strongest boreal spring instability is due to the weakest mean upwelling and largest vertical temperature difference across the mixed layer base. The former minimizes the negative feedback of mean upwelling, whereas the latter maximizes the positive feedback of anomalous upwelling effects on SST; both favor spring instability. It is argued that the season-dependent coupled instability may be responsible for the tendencies of ENSO phase locking with season and period-locking to integer multiples of the annual period, which, in turn, create irregularities in oscillation period and amplitude.

Full access