Search Results

You are looking at 61 - 70 of 81 items for

  • Author or Editor: F. Chen x
  • Refine by Access: All Content x
Clear All Modify Search
Gerhard Theurich
,
C. DeLuca
,
T. Campbell
,
F. Liu
,
K. Saint
,
M. Vertenstein
,
J. Chen
,
R. Oehmke
,
J. Doyle
,
T. Whitcomb
,
A. Wallcraft
,
M. Iredell
,
T. Black
,
A. M. Da Silva
,
T. Clune
,
R. Ferraro
,
P. Li
,
M. Kelley
,
I. Aleinov
,
V. Balaji
,
N. Zadeh
,
R. Jacob
,
B. Kirtman
,
F. Giraldo
,
D. McCarren
,
S. Sandgathe
,
S. Peckham
, and
R. Dunlap IV

Abstract

The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users.

The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.

Full access
T. H. Chen
,
A. Henderson-Sellers
,
P. C. D. Milly
,
A. J. Pitman
,
A. C. M. Beljaars
,
J. Polcher
,
F. Abramopoulos
,
A. Boone
,
S. Chang
,
F. Chen
,
Y. Dai
,
C. E. Desborough
,
R. E. Dickinson
,
L. Dümenil
,
M. Ek
,
J. R. Garratt
,
N. Gedney
,
Y. M. Gusev
,
J. Kim
,
R. Koster
,
E. A. Kowalczyk
,
K. Laval
,
J. Lean
,
D. Lettenmaier
,
X. Liang
,
J.-F. Mahfouf
,
H.-T. Mengelkamp
,
K. Mitchell
,
O. N. Nasonova
,
J. Noilhan
,
A. Robock
,
C. Rosenzweig
,
J. Schaake
,
C. A. Schlosser
,
J.-P. Schulz
,
Y. Shao
,
A. B. Shmakin
,
D. L. Verseghy
,
P. Wetzel
,
E. F. Wood
,
Y. Xue
,
Z.-L. Yang
, and
Q. Zeng

Abstract

In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m−2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m−2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models’ neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of30 W m−2 and 25 W m−2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m−2 for sensible heat flux and 10 W m−2 for latent heat flux). Actual runoff at the site is believed to be dominated by vertical drainage to groundwater, but several schemes produced significant amounts of runoff as overland flow or interflow. There is a range across schemes of 184 mm (40% of total pore volume) in the simulated annual mean root-zone soil moisture. Unfortunately, no measurements of soil moisture were available for model evaluation. A theoretical analysis suggested that differences in boundary conditions used in various schemes are not sufficient to explain the large variance in soil moisture. However, many of the extreme values of soil moisture could be explained in terms of the particulars of experimental setup or excessive evapotranspiration.

Full access
Ralph A. Kahn
,
Tim A. Berkoff
,
Charles Brock
,
Gao Chen
,
Richard A. Ferrare
,
Steven Ghan
,
Thomas F. Hansico
,
Dean A. Hegg
,
J. Vanderlei Martins
,
Cameron S. McNaughton
,
Daniel M. Murphy
,
John A. Ogren
,
Joyce E. Penner
,
Peter Pilewskie
,
John H. Seinfeld
, and
Douglas R. Worsnop

Abstract

A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.

Open access
D. N. Williams
,
R. Ananthakrishnan
,
D. E. Bernholdt
,
S. Bharathi
,
D. Brown
,
M. Chen
,
A. L. Chervenak
,
L. Cinquini
,
R. Drach
,
I. T. Foster
,
P. Fox
,
D. Fraser
,
J. Garcia
,
S. Hankin
,
P. Jones
,
D. E. Middleton
,
J. Schwidder
,
R. Schweitzer
,
R. Schuler
,
A. Shoshani
,
F. Siebenlist
,
A. Sim
,
W. G. Strand
,
M. Su
, and
N. Wilhelmi

By leveraging current technologies to manage distributed climate data in a unified virtual environment, the Earth System Grid (ESG) project is promoting data sharing between international research centers and diverse users. In transforming these data into a collaborative community resource, ESG is changing the way global climate research is conducted.

Since ESG's production beginnings in 2004, its most notable accomplishment was to efficiently store and distribute climate simulation data of some 20 global coupled ocean-atmosphere models to the scores of scientific contributors to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC); the IPCC collective scientific achievement was recognized by the award of a 2007 Nobel Peace Prize. Other international climate stakeholders such as the North American Regional Climate Change Assessment Program (NARCCAP) and the developers of the Community Climate System Model (CCSM) and of the Climate Science Computational End Station (CCES) also have endorsed ESG technologies for disseminating data to their respective user communities. In coming years, the recently created Earth System Grid Center for Enabling Technology (ESG-CET) will extend these methods to assist the international climate community in its efforts to better understand the global climate system.

Full access
Xiang-Yu Li
,
Hailong Wang
,
Jingyi Chen
,
Satoshi Endo
,
Simon Kirschler
,
Christiane Voigt
,
Ewan Crosbie
,
Luke D. Ziemba
,
David Painemal
,
Brian Cairns
,
Johnathan W. Hair
,
Andrea F. Corral
,
Claire Robinson
,
Hossein Dadashazar
,
Armin Sorooshian
,
Gao Chen
,
Richard Anthony Ferrare
,
Mary M. Kleb
,
Hongyu Liu
,
Richard Moore
,
Amy Jo Scarino
,
Michael A. Shook
,
Taylor J. Shingler
,
Kenneth Lee Thornhill
,
Florian Tornow
,
Heng Xiao
, and
Xubin Zeng

Abstract

Aerosol effects on micro/macrophysical properties of marine stratocumulus clouds over the western North Atlantic Ocean (WNAO) are investigated using in situ measurements and large-eddy simulations (LES) for two cold-air outbreak (CAO) cases (28 February and 1 March 2020) during the Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE). The LES is able to reproduce the vertical profiles of liquid water content (LWC), effective radius r eff and cloud droplet number concentration Nc from fast cloud droplet probe (FCDP) in situ measurements for both cases. Furthermore, we show that aerosols affect cloud properties (Nc , r eff, and LWC) via the prescribed bulk hygroscopicity of aerosols ( κ ¯ ) and aerosol size distribution characteristics. Nc , r eff, and liquid water path (LWP) are positively correlated to κ ¯ and aerosol number concentration (Na ) while cloud fractional cover (CFC) is insensitive to κ ¯ and aerosol size distributions for the two cases. The realistic changes to aerosol size distribution (number concentration, width, and the geometrical diameter) with the same meteorology state allow us to investigate aerosol effects on cloud properties without meteorological feedback. We also use the LES results to evaluate cloud properties from two reanalysis products, ERA5 and MERRA-2. Compared to LES, the ERA5 is able to capture the time evolution of LWP and total cloud coverage within the study domain during both CAO cases while MERRA-2 underestimates them.

Open access
C. S. B. Grimmond
,
M. Blackett
,
M. J. Best
,
J. Barlow
,
J-J. Baik
,
S. E. Belcher
,
S. I. Bohnenstengel
,
I. Calmet
,
F. Chen
,
A. Dandou
,
K. Fortuniak
,
M. L. Gouvea
,
R. Hamdi
,
M. Hendry
,
T. Kawai
,
Y. Kawamoto
,
H. Kondo
,
E. S. Krayenhoff
,
S-H. Lee
,
T. Loridan
,
A. Martilli
,
V. Masson
,
S. Miao
,
K. Oleson
,
G. Pigeon
,
A. Porson
,
Y-H. Ryu
,
F. Salamanca
,
L. Shashua-Bar
,
G-J. Steeneveld
,
M. Tombrou
,
J. Voogt
,
D. Young
, and
N. Zhang

Abstract

A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.

Full access
F. Vitart
,
C. Ardilouze
,
A. Bonet
,
A. Brookshaw
,
M. Chen
,
C. Codorean
,
M. Déqué
,
L. Ferranti
,
E. Fucile
,
M. Fuentes
,
H. Hendon
,
J. Hodgson
,
H.-S. Kang
,
A. Kumar
,
H. Lin
,
G. Liu
,
X. Liu
,
P. Malguzzi
,
I. Mallas
,
M. Manoussakis
,
D. Mastrangelo
,
C. MacLachlan
,
P. McLean
,
A. Minami
,
R. Mladek
,
T. Nakazawa
,
S. Najm
,
Y. Nie
,
M. Rixen
,
A. W. Robertson
,
P. Ruti
,
C. Sun
,
Y. Takaya
,
M. Tolstykh
,
F. Venuti
,
D. Waliser
,
S. Woolnough
,
T. Wu
,
D.-J. Won
,
H. Xiao
,
R. Zaripov
, and
L. Zhang

Abstract

Demands are growing rapidly in the operational prediction and applications communities for forecasts that fill the gap between medium-range weather and long-range or seasonal forecasts. Based on the potential for improved forecast skill at the subseasonal to seasonal time range, the Subseasonal to Seasonal (S2S) Prediction research project has been established by the World Weather Research Programme/World Climate Research Programme. A main deliverable of this project is the establishment of an extensive database containing subseasonal (up to 60 days) forecasts, 3 weeks behind real time, and reforecasts from 11 operational centers, modeled in part on the The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database for medium-range forecasts (up to 15 days).

The S2S database, available to the research community since May 2015, represents an important tool to advance our understanding of the subseasonal to seasonal time range that has been considered for a long time as a “desert of predictability.” In particular, this database will help identify common successes and shortcomings in the model simulation and prediction of sources of subseasonal to seasonal predictability. For instance, a preliminary study suggests that the S2S models significantly underestimate the amplitude of the Madden–Julian oscillation (MJO) teleconnections over the Euro-Atlantic sector. The S2S database also represents an important tool for case studies of extreme events. For instance, a multimodel combination of S2S models displays higher probability of a landfall over the islands of Vanuatu 2–3 weeks before Tropical Cyclone Pam devastated the islands in March 2015.

Full access
A. G. Slater
,
C. A. Schlosser
,
C. E. Desborough
,
A. J. Pitman
,
A. Henderson-Sellers
,
A. Robock
,
K. Ya Vinnikov
,
J. Entin
,
K. Mitchell
,
F. Chen
,
A. Boone
,
P. Etchevers
,
F. Habets
,
J. Noilhan
,
H. Braden
,
P. M. Cox
,
P. de Rosnay
,
R. E. Dickinson
,
Z-L. Yang
,
Y-J. Dai
,
Q. Zeng
,
Q. Duan
,
V. Koren
,
S. Schaake
,
N. Gedney
,
Ye M. Gusev
,
O. N. Nasonova
,
J. Kim
,
E. A. Kowalczyk
,
A. B. Shmakin
,
T. G. Smirnova
,
D. Verseghy
,
P. Wetzel
, and
Y. Xue

Abstract

Twenty-one land surface schemes (LSSs) performed simulations forced by 18 yr of observed meteorological data from a grassland catchment at Valdai, Russia, as part of the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase 2(d). In this paper the authors examine the simulation of snow. In comparison with observations, the models are able to capture the broad features of the snow regime on both an intra- and interannual basis. However, weaknesses in the simulations exist, and early season ablation events are a significant source of model scatter. Over the 18-yr simulation, systematic differences between the models’ snow simulations are evident and reveal specific aspects of snow model parameterization and design as being responsible. Vapor exchange at the snow surface varies widely among the models, ranging from a large net loss to a small net source for the snow season. Snow albedo, fractional snow cover, and their interplay have a large effect on energy available for ablation, with differences among models most evident at low snow depths. The incorporation of the snowpack within an LSS structure affects the method by which snow accesses, as well as utilizes, available energy for ablation. The sensitivity of some models to longwave radiation, the dominant winter radiative flux, is partly due to a stability-induced feedback and the differing abilities of models to exchange turbulent energy with the atmosphere. Results presented in this paper suggest where weaknesses in macroscale snow modeling lie and where both theoretical and observational work should be focused to address these weaknesses.

Full access
L. L. Pan
,
E. L. Atlas
,
R. J. Salawitch
,
S. B. Honomichl
,
J. F. Bresch
,
W. J. Randel
,
E. C. Apel
,
R. S. Hornbrook
,
A. J. Weinheimer
,
D. C. Anderson
,
S. J. Andrews
,
S. Baidar
,
S. P. Beaton
,
T. L. Campos
,
L. J. Carpenter
,
D. Chen
,
B. Dix
,
V. Donets
,
S. R. Hall
,
T. F. Hanisco
,
C. R. Homeyer
,
L. G. Huey
,
J. B. Jensen
,
L. Kaser
,
D. E. Kinnison
,
T. K. Koenig
,
J.-F. Lamarque
,
C. Liu
,
J. Luo
,
Z. J. Luo
,
D. D. Montzka
,
J. M. Nicely
,
R. B. Pierce
,
D. D. Riemer
,
T. Robinson
,
P. Romashkin
,
A. Saiz-Lopez
,
S. Schauffler
,
O. Shieh
,
M. H. Stell
,
K. Ullmann
,
G. Vaughan
,
R. Volkamer
, and
G. Wolfe

Abstract

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

Full access
Eric D. Maloney
,
Andrew Gettelman
,
Yi Ming
,
J. David Neelin
,
Daniel Barrie
,
Annarita Mariotti
,
C.-C. Chen
,
Danielle R. B. Coleman
,
Yi-Hung Kuo
,
Bohar Singh
,
H. Annamalai
,
Alexis Berg
,
James F. Booth
,
Suzana J. Camargo
,
Aiguo Dai
,
Alex Gonzalez
,
Jan Hafner
,
Xianan Jiang
,
Xianwen Jing
,
Daehyun Kim
,
Arun Kumar
,
Yumin Moon
,
Catherine M. Naud
,
Adam H. Sobel
,
Kentaroh Suzuki
,
Fuchang Wang
,
Junhong Wang
,
Allison A. Wing
,
Xiaobiao Xu
, and
Ming Zhao

Abstract

Realistic climate and weather prediction models are necessary to produce confidence in projections of future climate over many decades and predictions for days to seasons. These models must be physically justified and validated for multiple weather and climate processes. A key opportunity to accelerate model improvement is greater incorporation of process-oriented diagnostics (PODs) into standard packages that can be applied during the model development process, allowing the application of diagnostics to be repeatable across multiple model versions and used as a benchmark for model improvement. A POD characterizes a specific physical process or emergent behavior that is related to the ability to simulate an observed phenomenon. This paper describes the outcomes of activities by the Model Diagnostics Task Force (MDTF) under the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) program to promote development of PODs and their application to climate and weather prediction models. MDTF and modeling center perspectives on the need for expanded process-oriented diagnosis of models are presented. Multiple PODs developed by the MDTF are summarized, and an open-source software framework developed by the MDTF to aid application of PODs to centers’ model development is presented in the context of other relevant community activities. The paper closes by discussing paths forward for the MDTF effort and for community process-oriented diagnosis.

Full access