Search Results

You are looking at 61 - 70 of 115 items for

  • Author or Editor: H. Zhang x
  • Refine by Access: All Content x
Clear All Modify Search
J. W. Yan
,
J. Y. Liu
,
B. Z. Chen
,
M. Feng
,
S. F. Fang
,
G. Xu
,
H. F. Zhang
,
M. L. Che
,
W. Liang
,
Y. F. Hu
,
W. H. Kuang
, and
H. M. Wang

Abstract

Sensible heat flux (H), latent heat flux (LE), and net radiation (NR) are important surface energy components that directly influence climate systems. In this study, the changes in the surface energy and their contributions from global climate change and/or land-cover change over eastern China during the past nearly 30 years were investigated and assessed using a process-based land surface model [the Ecosystem–Atmosphere Simulation Scheme (EASS)]. The modeled results show that climate change contributed more to the changes of land surface energy fluxes than land-cover change, with their contribution ratio reaching 4:1 or even higher. Annual average temperature increased before 2000 and reversed thereafter; annual total precipitation continually decreased, and incident solar radiation continually increased over the past nearly 30 years. These climatic changes could lead to increased NR, H, and LE, assuming land cover remained unchanged during the past nearly 30 years. Among these meteorological variables, at spatial distribution, the incident solar radiation has the greatest effect on land surface energy exchange. The impacts of land-cover change on the seasonal variations in land surface heat fluxes between the four periods were large, especially for H. The changes in the regional energy fluxes resulting from different land-cover type conversions varied greatly. The conversion from farmland to evergreen coniferous forests had the greatest influence on land surface energy exchange, leading to a decrease in H by 19.39% and an increase in LE and NR by 7.44% and 2.74%, respectively. The results of this study can provide a basis and reference for climate change adaptation.

Full access
Xin-Min Zeng
,
B. Wang
,
Y. Zhang
,
Y. Zheng
,
N. Wang
,
M. Wang
,
X. Yi
,
C. Chen
,
Z. Zhou
, and
H. Liu

Abstract

To quantify and explain effects of different land surface schemes (LSSs) on simulated geopotential height (GPH) fields, we performed simulations over China for the summer of 2003 using 12-member ensembles with the Weather Research and Forecasting (WRF) Model, version 3. The results show that while the model can generally simulate the seasonal and monthly mean GPH patterns, the effects of the LSS choice on simulated GPH fields are substantial, with the LSS-induced differences exceeding 10 gpm over a large area (especially the northwest) of China, which is very large compared with climate anomalies and forecast errors. In terms of the assessment measures for the four LSS ensembles [namely, the five-layer thermal diffusion scheme (SLAB), the Noah LSS (NOAH), the Rapid Update Cycle LSS (RUC), and the Pleim–Xiu LSS (PLEX)] in the WRF, the PLEX ensemble is the best, followed by the NOAH, RUC, and SLAB ensembles. The sensitivity of the simulated 850-hPa GPH is more significant than that of the 500-hPa GPH, with the 500-hPa GPH difference fields generally characterized by two large areas with opposite signs due to the smoothly varying nature of GPHs. LSS-induced GPH sensitivity is found to be higher than the GPH sensitivity induced by atmospheric boundary layer schemes. Moreover, theoretical analyses show that the LSS-induced GPH sensitivity is mainly caused by changes in surface fluxes (in particular, sensible heat flux), which further modify atmospheric temperature and pressure fields. The temperature and pressure fields generally have opposite contributions to changes in the GPH. This study emphasizes the importance of choosing and improving LSSs for simulating seasonal and monthly GPHs using regional climate models.

Full access
Yang Yang
,
James C. McWilliams
,
X. San Liang
,
Hong Zhang
,
Robert H. Weisberg
,
Yonggang Liu
, and
Dimitris Menemenlis

Abstract

The submesoscale energetics of the eastern Gulf of Mexico (GoM) are diagnosed using outputs from a 1/48° MITgcm simulation. Employed is a recently developed, localized multiscale energetics formalism with three temporal-scale ranges (or scale windows), namely, a background flow window, a mesoscale window, and a submesoscale window. It is found that the energy cascades are highly inhomogeneous in space. Over the eastern continental slope of the Campeche Bank, the submesoscale eddies are generated via barotropic instability, with forward cascades of kinetic energy (KE) following a weak seasonal variation. In the deep basin of the eastern GoM, the submesoscale KE exhibits a seasonal cycle, peaking in winter, maintained via baroclinic instability, with forward available potential energy (APE) cascades in the mixed layer, followed by a strong buoyancy conversion. A spatially coherent pool of inverse KE cascade is found to extract energy from the submesoscale KE reservoir in this region to replenish the background flow. The northern GoM features the strongest submesoscale signals with a similar seasonality as seen in the deep basin. The dominant source for the submesoscale KE during winter is from buoyancy conversion and also from the forward KE cascades from mesoscale processes. To maintain the balance, the excess submesoscale KE must be dissipated by smaller-scale processes via a forward cascade, implying a direct route to finescale dissipation. Our results highlight that the role of submesoscale turbulence in the ocean energy cycle is region and time dependent.

Full access
Jun Li
,
Walter W. Wolf
,
W. Paul Menzel
,
Wenjian Zhang
,
Hung-Lung Huang
, and
Thomas H. Achtor

Abstract

The International Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) Processing Package (IAPP) has been developed to retrieve the atmospheric temperature profile, moisture profile, atmospheric total ozone, and other parameters in both clear and cloudy atmospheres from the ATOVS measurements. The algorithm that retrieves these parameters contains four steps: 1) cloud detection and removal, 2) bias adjustment for ATOVS measurements, 3) regression retrieval processes, and 4) a nonlinear iterative physical retrieval. Nine (3 × 3) adjacent High-Resolution Infrared Sounder (HIRS)/3 spot observations, together with Advanced Microwave Sounding Unit-A observations remapped to the HIRS/3 resolution, are used to retrieve the temperature profile, moisture profile, surface skin temperature, total atmospheric ozone and microwave surface emissivity, and so on. ATOVS profile retrieval results are evaluated by root-mean-square differences with respect to radiosonde observation profiles. The accuracy of the retrieval is about 2.0 K for the temperature at 1-km vertical resolution and 3.0–6.0 K for the dewpoint temperature at 2-km vertical resolution in this study. The IAPP is now available to users worldwide for processing the real-time ATOVS data.

Full access
A. Smedman
,
U. Högström
,
E. Sahleé
,
W. M. Drennan
,
K. K. Kahma
,
H. Pettersson
, and
F. Zhang

Abstract

By combining simultaneous data from an instrumented Air–Sea Interaction Spar (ASIS) buoy and a 30-m tower, profiles of wind and turbulence characteristics have been obtained at several heights from about 1 to 30 m above the water surface during swell conditions. Five cases formed as averages over time periods ranging from 2.5 to 9.5 h, representing quasi-steady conditions, have been selected. They represent a range of typical wave age and include wind-following swell cases and cross-swell cases. For relatively large wave age, the wind profile exhibits a well-defined maximum in the height range 5–10 m; for more modest wave age, this maximum turns into a sharp “knee” in the wind profile. Below the maximum (or knee), the wind increases rapidly with height; above that point the wind is very nearly constant up to the highest measuring level on the tower, 30 m. Analysis of balloon data from one day with swell indicates that the layer with constant wind in fact extends to the top of the boundary layer, in this case ∼200 m. Analysis of the complete swell dataset from the 45 days of the 2003 Baltic Swell experiment shows that the results concerning wind profile shape obtained from the selected cases are generally valid in this experiment. Analysis of the nondimensional wind profile ϕm shows that Monin–Obukhov scaling is not valid during swell. Wind and turbulence characteristics are found not to vary to a significant degree with the wind/swell angle within the range of angles encountered, ±90°.

Full access
U. Högström
,
A. Smedman
,
E. Sahleé
,
W. M. Drennan
,
K. K. Kahma
,
H. Pettersson
, and
F. Zhang

Abstract

Analysis of the turbulent kinetic energy (TKE) budget for five slightly unstable cases with swell has been performed based on measurements of mechanical production, buoyancy production, turbulent transport, and dissipation at five levels over the sea, from 2.5 to 26 m. The time rate of change and advection of TKE were found to be small, so the TKE residual is interpreted as an estimate of the pressure transport term (Tp ). In two cases with high wave age, the Tp term is a gain at all heights. For three cases with smaller wave age, Tp is a loss in the TKE budget below 5–10 m and a gain for greater heights, where the decrease is exponential, thus showing the combined effects of swell waves and a range of waves traveling slower than the wind. The TKE budget for a case with growing sea but similar wind speed and stability as some of the swell cases has Tp close to zero at all heights. It is shown that the observed characteristic wind profile with either a low-level maximum in the 5–10-m range or a distinct “knee” at that height is an effect of the Tp term.

Full access
H. Zhang
,
A. Henderson-Sellers
,
A. J. Pitman
,
C. E. Desborough
,
J. L. McGregor
, and
J. J. Katzfey

Abstract

By coupling a multimode land surface scheme with a regional climate model, three scientific issues are addressed in this paper: (i) the regional model's sensitivity to the different levels of complexity presented by the land surface parameterization, (ii) relative model sensitivity to the land surface parameterization as compared with that to other model physical representations, and, (iii) following offline calibration, whether different complexity in the land surface representation leads to different model performance in the coupled experiments. In this study, a version of a regional model [Division of Atmospheric Research Limited Area Model (DARLAM)] is coupled with the Chameleon Surface Model (CHASM). Three sets of experiments are analyzed in this paper, employing six different complexity modes of CHASM. Model results from these coupled experiments show that the regional model is sensitive overall to different complexities represented in the CHASM modes. Moreover, these model sensitivities are larger than the model's intrinsic sensitivity to the perturbation of its initial conditions. The sensitivity is retained in a series of model configurations employing different vertical resolutions and convection schemes. Different complexities in the land surface representation lead to 10–30 W m−2 changes in surface evaporation and 0.5–2.5-K changes in surface temperature. In comparing different sets of coupled experiments, it is noted that, because of the complex feedbacks involved in air–land interactions, land surface parameterizations can induce quantitatively similar model sensitivity to that from changing other model aspects such as vertical resolution and convection parameterization. Although different CHASM modes can be calibrated to show similar offline results, when coupled with DARLAM these similarities between different complexity modes are significantly reduced. The sensitivity revealed in the coupled model simulations underlines the importance of understanding the feedbacks between model land surface parameterization and other physical components. More important, these results show that complexity in land surface representation cannot be substituted by tuning of parameters such as the surface or stomatal resistance, because offline agreement is not maintained in coupled simulations.

Full access
Richard B. Neale
,
Jadwiga Richter
,
Sungsu Park
,
Peter H. Lauritzen
,
Stephen J. Vavrus
,
Philip J. Rasch
, and
Minghua Zhang

Abstract

The Community Atmosphere Model, version 4 (CAM4), was released as part of the Community Climate System Model, version 4 (CCSM4). The finite volume (FV) dynamical core is now the default because of its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of convective momentum transport (CMT). An additional cloud fraction calculation is now performed following macrophysical state updates to provide improved thermodynamic consistency. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments (e.g., the Arctic), where cloud fraction and cloud water values were often inconsistent in CAM3. In CAM4 the FV dynamical core further degrades the excessive trade-wind simulation, but reduces zonal stress errors at higher latitudes. Plume dilution alleviates much of the midtropospheric tropical dry biases and reduces the persistent monsoon precipitation biases over the Arabian Peninsula and the southern Indian Ocean. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. CAM4 shows a global reduction in cloud fraction compared to CAM3, primarily as a result of the freeze-drying and improved cloud fraction equilibrium modifications. Regional climate feature improvements include the propagation of stationary waves from the Pacific into midlatitudes and the seasonal frequency of Northern Hemisphere blocking events. A 1° versus 2° horizontal resolution of the FV dynamical core exhibits superior improvements in regional climate features of precipitation and surface stress. Improvements in the fully coupled mean climate between CAM3 and CAM4 are also more substantial than in forced sea surface temperature (SST) simulations.

Full access
L. A. Vincent
,
X. Zhang
,
R. D. Brown
,
Y. Feng
,
E. Mekis
,
E. J. Milewska
,
H. Wan
, and
X. L. Wang

Abstract

Trends in Canada’s climate are analyzed using recently updated data to provide a comprehensive view of climate variability and long-term changes over the period of instrumental record. Trends in surface air temperature, precipitation, snow cover, and streamflow indices are examined along with the potential impact of low-frequency variability related to large-scale atmospheric and oceanic oscillations on these trends. The results show that temperature has increased significantly in most regions of Canada over the period 1948–2012, with the largest warming occurring in winter and spring. Precipitation has also increased, especially in the north. Changes in other climate and hydroclimatic variables, including a decrease in the amount of precipitation falling as snow in the south, fewer days with snow cover, an earlier start of the spring high-flow season, and an increase in April streamflow, are consistent with the observed warming and precipitation trends. For the period 1900–2012, there are sufficient temperature and precipitation data for trend analysis for southern Canada (south of 60°N) only. During this period, temperature has increased significantly across the region, precipitation has increased, and the amount of precipitation falling as snow has decreased in many areas south of 55°N. The results also show that modes of low-frequency variability modulate the spatial distribution and strength of the trends; however, they alone cannot explain the observed long-term trends in these climate variables.

Full access
Bowen Pan
,
Yuan Wang
,
Jiaxi Hu
,
Yun Lin
,
Jen-Shan Hsieh
,
Timothy Logan
,
Xidan Feng
,
Jonathan H. Jiang
,
Yuk L. Yung
, and
Renyi Zhang

Abstract

The radiative and microphysical properties of Saharan dust are believed to impact the Atlantic regional climate and tropical cyclones (TCs), but the detailed mechanism remains uncertain. In this study, atmosphere-only simulations are performed from 2002 to 2006 using the Community Atmospheric Model, version 5.1, with and without dust emission from the Sahara Desert. The Saharan dust exhibits noticeable impacts on the regional longwave and shortwave radiation, cloud formation, and the convective systems over West Africa and the tropical Atlantic. The African easterly jet and West African monsoon are modulated by dust, leading to northward shifts of the intertropical convergence zone and the TC genesis region. The dust events induce positive midlevel moisture and entropy deficit anomalies, enhancing the TC genesis. On the other hand, the increased vertical wind shear and decreased low-level vorticity and potential intensity by dust inhibit TC formation in the genesis region. The ventilation index shows a decrease in the intensification region and an increase in the genesis region by dust, corresponding to favorable and unfavorable TC activities, respectively. The comparison of nondust scenarios in 2005 and 2006 shows more favorable TC conditions in 2005 characterized by higher specific humidity and potential intensity, but lower ventilation index, wind shear, and entropy deficit. Those are attributable to the observed warmer sea surface temperature (SST) in 2005, in which dust effects can be embedded. Our results imply significant dust perturbations on the radiative budget, hydrological cycle, and large-scale environments relevant to TC activity over the Atlantic.

Full access