Search Results

You are looking at 61 - 70 of 76 items for

  • Author or Editor: Margaret LeMone x
  • Refine by Access: All Content x
Clear All Modify Search
Alexandre O. Fierro
,
Edward J. Zipser
,
Margaret A. LeMone
,
Jerry M. Straka
, and
Joanne (Malkus) Simpson

Abstract

This paper addresses questions resulting from the authors’ earlier simulation of the 9 February 1993 Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Research Experiment (TOGA COARE) squall line, which used updraft trajectories to illustrate how updrafts deposit significant moist static energy (in terms of equivalent potential temperature θe ) in the upper troposphere, despite dilution and a θe minimum in the midtroposphere. The major conclusion drawn from this earlier work was that the “hot towers” that Riehl and Malkus showed as necessary to maintain the Hadley circulation need not be undilute. It was not possible, however, to document how the energy (or θe ) increased above the midtroposphere. To address this relevant scientific question, a high-resolution (300 m) simulation was carried out using a standard 3-ICE microphysics scheme (Lin–Farley–Orville).

Detailed along-trajectory information also allows more accurate examination of the forces affecting each parcel’s vertical velocity W, their displacement, and the processes impacting θe , with focus on parcels reaching the upper troposphere. Below 1 km, pressure gradient acceleration forces parcels upward against negative buoyancy acceleration associated with the sum of (positive) virtual temperature excess and (negative) condensate loading. Above 1 km, the situation reverses, with the buoyancy (and thermal buoyancy) acceleration becoming positive and nearly balancing a negative pressure gradient acceleration, slightly larger in magnitude, leading to a W minimum at midlevels. The W maximum above 8 km and concomitant θ e increase between 6 and 8 km are both due to release of latent heat resulting from the enthalpy of freezing of raindrops and riming onto graupel from 5 to 6.5 km and water vapor deposition onto small ice crystals and graupel pellets above that, between 7 and 10 km.

Full access
Jennifer L. Davison
,
Robert M. Rauber
,
Larry Di Girolamo
, and
Margaret A. LeMone

Abstract

This paper investigates wintertime tropical marine boundary layer (TMBL) statistical characteristics over the western North Atlantic using the complete set of island-launched soundings from the Rain in Cumulus over the Ocean (RICO) experiment. The soundings are subdivided into undisturbed and disturbed classifications using two discriminators: 1) dates chosen by Global Energy and Water Cycle Experiment (GEWEX) Cloud System Studies (GCSS) investigators to construct the mean RICO sounding and 2) daily average rain rates.

A wide range of relative humidity (RH) values was observed between the surface and 8.0 km. At 2.0 km, half the RH values were within 56%–89%; at 4.0 km, half were within 13%–61%. The rain-rate method of separating disturbed and undisturbed soundings appears more meaningful than the GCSS method. The median RH for disturbed conditions using the rain-rate method showed moister conditions from the surface to 8.0 km, with maximum RH differences of 30%–40%. Moist air generally extended higher on disturbed than undisturbed days.

Based on equivalent potential temperature, wind direction, and RH analyses, the most common altitude marking the TMBL top was about 4.0 km. Temperature inversions (over both 50- and 350-m intervals) were observed at every altitude above 1.2 km; there were no dominant inversion heights and most of the inversions were weak. Wind direction analyses indicated that winds within the TMBL originated from more tropical latitudes on disturbed days.

The analyses herein suggest that the RICO profile used to initialize many model simulations of this environment represents only a small subset of the broad range of possible conditions characterizing the wintertime trades.

Full access
David N. Yates
,
Fei Chen
,
Margaret A. LeMone
,
Russell Qualls
,
Steven P. Oncley
,
Robert L. Grossman
, and
Edward A. Brandes

Abstract

A multiscale dataset that includes atmospheric, surface, and subsurface observations obtained from an observation network covering a region that has a scale order comparable to mesoscale and general circulation models is described and analyzed. The dataset is half-hourly time series of forcing and flux response data developed from the one-month Cooperative Atmosphere–Surface Exchange Study (CASES-97) experiment, located in the Walnut Watershed near Wichita, Kansas. The horizontal complexity of this dataset was analyzed by looking at the sensible and latent heat flux response of station data from the three main land surface types of winter wheat, grass/pastureland, and bare soil/sparse vegetation. The variability in the heat flux response at and among the different sites points to the need for a spatially distributed, time-varying atmospheric-forcing dataset for use in land surface modeling experiments. Such a dataset at horizontal spacings of 1, 5, and 10 km was developed from the station data and other remotely sensed platforms, and its spatial heterogeneity was analyzed.

Full access
Margaret A. LeMone
,
Fei Chen
,
Joseph G. Alfieri
,
Mukul Tewari
,
Bart Geerts
,
Qun Miao
,
Robert L. Grossman
, and
Richard L. Coulter

Abstract

Analyses of daytime fair-weather aircraft and surface-flux tower data from the May–June 2002 International H2O Project (IHOP_2002) and the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to document the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas. Combining the two field experiments clearly reveals the strong influence of vegetation cover, with H maxima over sparse/dormant vegetation, and H minima over green vegetation; and, to a lesser extent, LE maxima over green vegetation, and LE minima over sparse/dormant vegetation. If the small number of cases is producing the correct trend, other effects of vegetation and the impact of soil moisture emerge through examining the slope ΔxyLE/Δxy H for the best-fit straight line for plots of time-averaged LE as a function of time-averaged H over the area. Based on the surface energy balance, H + LE = R netG sfc, where R net is the net radiation and G sfc is the flux into the soil; R netG sfc ∼ constant over the area implies an approximately −1 slope. Right after rainfall, H and LE vary too little horizontally to define a slope. After sufficient drying to produce enough horizontal variation to define a slope, a steep (∼−2) slope emerges. The slope becomes shallower and better defined with time as H and LE horizontal variability increases. Similarly, the slope becomes more negative with moister soils. In addition, the slope can change with time of day due to phase differences in H and LE. These trends are based on land surface model (LSM) runs and observations collected under nearly clear skies; the vegetation is unstressed for the days examined. LSM runs suggest terrain may also play a role, but observational support is weak.

Full access
Margaret A. LeMone
,
Fei Chen
,
Mukul Tewari
,
Jimy Dudhia
,
Bart Geerts
,
Qun Miao
,
Richard L. Coulter
, and
Robert L. Grossman

Abstract

Fair-weather data from the May–June 2002 International H2O Project (IHOP_2002) 46-km eastern flight track in southeast Kansas are compared to simulations using the advanced research version of the Weather Research and Forecasting model coupled to the Noah land surface model (LSM), to gain insight into how the surface influences convective boundary layer (CBL) fluxes and structure, and to evaluate the success of the modeling system in representing CBL structure and evolution. This offers a unique look at the capability of the model on scales the length of the flight track (46 km) and smaller under relatively uncomplicated meteorological conditions.

It is found that the modeled sensible heat flux H is significantly larger than observed, while the latent heat flux (LE) is much closer to observations. The slope of the best-fit line ΔLE/ΔH to a plot of LE as a function of H, an indicator of horizontal variation in available energy H + LE, for the data along the flight track, was shallower than observed. In a previous study of the IHOP_2002 western track, similar results were explained by too small a value of the parameter C in the Zilitinkevich equation used in the Noah LSM to compute the roughness length for heat and moisture flux from the roughness length for momentum, which is supplied in an input table; evidence is presented that this is true for the eastern track as well. The horizontal variability in modeled fluxes follows the soil moisture pattern rather than vegetation type, as is observed; because the input land use map does not capture the observed variation in vegetation. The observed westward rise in CBL depth is successfully modeled for 3 of the 4 days, but the actual depths are too high, largely because modeled H is too high. The model reproduces the timing of observed cumulus cloudiness for 3 of the 4 days.

Modeled clouds lead to departures from the typical clear-sky straight line relating surface H to LE for a given model time, making them easy to detect. With spatial filtering, a straight slope line can be recovered. Similarly, larger filter lengths are needed to produce a stable slope for observed fluxes when there are clouds than for clear skies.

Full access
Margaret A. LeMone
,
Fei Chen
,
Mukul Tewari
,
Jimy Dudhia
,
Bart Geerts
,
Qun Miao
,
Richard L. Coulter
, and
Robert L. Grossman

Abstract

Fair-weather data along the May–June 2002 International H2O Project (IHOP_2002) eastern track and the nearby Argonne Boundary Layer Experiments (ABLE) facility in southeast Kansas are compared to numerical simulations to gain insight into how the surface influences convective boundary layer (CBL) structure, and to evaluate the success of the modeling system in replicating the observed behavior. Simulations are conducted for 4 days, using the Advanced Research version of the Weather Research and Forecasting (WRF) model coupled to the Noah land surface model (LSM), initialized using the High-Resolution Land Data Assimilation System (HRLDAS). Because the observations focus on phenomena less than 60 km in scale, the model is run with 1-km grid spacing, offering a critical look at high-resolution model behavior in an environment uncomplicated by precipitation.

The model replicates the type of CBL structure on scales from a few kilometers to ∼100 km, but some features at the kilometer scales depend on the grid spacing. Mesoscale (tens of kilometers) circulations were clearly evident on 2 of the 4 days (30 May and 20 June), clearly not evident on 1 day (22 June), with the situation for the fourth day (17 June) ambiguous. Both observed and modeled surface-heterogeneity-generated mesoscale circulations are evident for 30 May. On the other hand, 20 June satellite images show north-northwest–south-southeast cloud streets (rolls) modulated longitudinally, presumably by tropospheric gravity waves oriented normal to the roll axis, creating northeast–southwest ridges and valleys spaced 50–100 km apart. Modeled cloud streets showed similar longitudinal modulation, with the associated two-dimensional structure having maximum amplitude above the CBL and no relationship to the CBL temperature distribution; although there were patches of mesoscale vertical velocity correlated with CBL temperature. On 22 June, convective rolls were the dominant structure in both model and observations.

For the 3 days for which satellite images show cloud streets, WRF produces rolls with the right orientation and wavelength, which grows with CBL depth. Modeled roll structures appeared for the range of CBL depth to Obukhov length ratios (−zi /L) associated with rolls. However, sensitivity tests show that the roll wavelength is also related to the grid spacing, and the modeled convection becomes more cellular with smaller grid spacing.

Full access
Tammy M. Weckwerth
,
Crystalyne R. Pettet
,
Frédéric Fabry
,
Shin Ju Park
,
Margaret A. LeMone
, and
James W. Wilson

Abstract

This study will validate the S-band dual-polarization Doppler radar (S-Pol) radar refractivity retrieval using measurements from the International H2O Project conducted in the southern Great Plains in May–June 2002. The range of refractivity measurements during this project extended out to 40–60 km from the radar. Comparisons between the radar refractivity field and fixed and mobile mesonet refractivity values within the S-Pol refractivity domain show a strong correlation. Comparisons between the radar refractivity field and low-flying aircraft also show high correlations. Thus, the radar refractivity retrieval provides a good representation of low-level atmospheric refractivity. Numerous instruments that profile the temperature and moisture are also compared with the refractivity field. Radiosonde measurements, Atmospheric Emitted Radiance Interferometers, and a vertical-pointing Raman lidar show good agreement, especially at low levels. Under most daytime summertime conditions, radar refractivity measurements are representative of an ∼250-m-deep layer. Analyses are also performed on the utility of refractivity for short-term forecasting applications. It is found that the refractivity field may detect low-level boundaries prior to the more traditional radar reflectivity and Doppler velocity fields showing their existence. Data from two days on which convection initiated within S-Pol refractivity range suggest that the refractivity field may exhibit some potential utility in forecasting convection initiation. This study suggests that unprecedented advances in mapping near-surface water vapor and subsequent improvements in predicting convective storms could result from implementing the radar refractivity retrieval on the national network of operational radars.

Full access
Joseph G. Alfieri
,
Dev Niyogi
,
Peter D. Blanken
,
Fei Chen
,
Margaret A. LeMone
,
Kenneth E. Mitchell
,
Michael B. Ek
, and
Anil Kumar

Abstract

Vegetated surfaces, such as grasslands and croplands, constitute a significant portion of the earth’s surface and play an important role in land–atmosphere exchange processes. This study focuses on one important parameter used in describing the exchange of moisture from vegetated surfaces: the minimum canopy resistance (r c min ). This parameter is used in the Jarvis canopy resistance scheme that is incorporated into the Noah and many other land surface models. By using an inverted form of the Jarvis scheme, r c min is determined from observational data collected during the 2002 International H2O Project (IHOP_2002). The results indicate that r c min is highly variable both site to site and over diurnal and longer time scales. The mean value at the grassland sites in this study is 96 s m−1 while the mean value for the cropland (winter wheat) sites is one-fourth that value at 24 s m−1. The mean r c min for all the sites is 72 s m−1 with a standard deviation of 39 s m−1. This variability is due to both the empirical nature of the Jarvis scheme and a combination of changing environmental conditions, such as plant physiology and plant species composition, that are not explicitly considered by the scheme. This variability in r c min has important implications for land surface modeling where r c min is often parameterized as a constant. For example, the Noah land surface model parameterizes r c min for the grasslands and croplands types in this study as 40 s m−1. Tests with the coupled Weather Research and Forecasting (WRF)–Noah model indicate that the using the modified values of r c min from this study improves the estimates of latent heat flux; the difference between the observed and modeled moisture flux decreased by 50% or more. While land surface models that estimate transpiration using Jarvis-type relationships may be improved by revising the r c min values for grasslands and croplands, updating the r c min will not fully account for the variability in r c min observed in this study. As such, it may be necessary to replace the Jarvis scheme currently used in many land surface and numerical weather prediction models with a physiologically based estimate of the canopy resistance.

Full access
Tammy M. Weckwerth
,
David B. Parsons
,
Steven E. Koch
,
James A. Moore
,
Margaret A. LeMone
,
Belay B. Demoz
,
Cyrille Flamant
,
Bart Geerts
,
Junhong Wang
, and
Wayne F. Feltz

The International H2O Project (IHOP_2002) is one of the largest North American meteorological field experiments in history. From 13 May to 25 June 2002, over 250 researchers and technical staff from the United States, Germany, France, and Canada converged on the Southern Great Plains to measure water vapor and other atmospheric variables. The principal objective of IHOP_2002 is to obtain an improved characterization of the time-varying three-dimensional water vapor field and evaluate its utility in improving the understanding and prediction of convective processes. The motivation for this objective is the combination of extremely low forecast skill for warm-season rainfall and the relatively large loss of life and property from flash floods and other warm-season weather hazards. Many prior studies on convective storm forecasting have shown that water vapor is a key atmospheric variable that is insufficiently measured. Toward this goal, IHOP_2002 brought together many of the existing operational and new state-of-the-art research water vapor sensors and numerical models.

The IHOP_2002 experiment comprised numerous unique aspects. These included several instruments fielded for the first time (e.g., reference radiosonde); numerous upgraded instruments (e.g., Wyoming Cloud Radar); the first ever horizontal-pointing water vapor differential absorption lidar (DIAL; i.e., Leandre II on the Naval Research Laboratory P-3), which required the first onboard aircraft avoidance radar; several unique combinations of sensors (e.g., multiple profiling instruments at one field site and the German water vapor DIAL and NOAA/Environmental Technology Laboratory Doppler lidar on board the German Falcon aircraft); and many logistical challenges. This article presents a summary of the motivation, goals, and experimental design of the project, illustrates some preliminary data collected, and includes discussion on some potential operational and research implications of the experiment.

Full access
Margaret A. LeMone
,
Fei Chen
,
Joseph G. Alfieri
,
Richard H. Cuenca
,
Yutaka Hagimoto
,
Peter Blanken
,
Dev Niyogi
,
Songlak Kang
,
Kenneth Davis
, and
Robert L. Grossman

The May–June 2002 International H2O Project was held in the U.S. Southern Great Plains to determine ways that moisture data could be collected and utilized in numerical forecast models most effectively. We describe the surface and boundary layer components, and indicate how the data can be acquired. These data document the eddy transport of heat and water vapor from the surface to the atmosphere (in terms of sensible heat flux H and latent heat flux LE), as well as radiative, atmospheric, soil, and vegetative factors that affect it, so that the moisture and heat supply to the atmosphere can be related to surface properties both for observational studies and tests of land surface models. The surface dataset was collected at 10 surface flux towers at locations representing the major types of land cover and extending from southeast Kansas to the Oklahoma Panhandle. At each location, the components of the surface energy budget (H, LE, net radiation, and soil heat flux) are documented each half-hour, along with the weather (wind, temperature, mixing ratio, air pressure, and precipitation), soil temperature, moisture, and matric potential down to 70–90 cm beneath the surface at 9 of the 10 sites. Observations of soil and vegetation properties and their horizontal changes were taken near all 10 towers during periodic visits. Aircraft measurements of H and LE from repeated low-level flight tracks along three tracks collocated with the surface sites extend the flux tower measurements horizontally. We illustrate the effects of vegetation and soil moisture on the H and LE and their horizontal variability.

Full access