Search Results
You are looking at 61 - 70 of 84 items for
- Author or Editor: Paul Dirmeyer x
- Refine by Access: All Content x
Quantification of sources and sinks of carbon at global and regional scales requires not only a good description of the land sources and sinks of carbon, but also of the synoptic and mesoscale meteorology. An experiment was performed in Les Landes, southwest France, during May–June 2005, to determine the variability in concentration gradients and fluxes of CO2 The CarboEurope Regional Experiment Strategy (CERES; see also http://carboregional.mediasfrance.org/index) aimed to produce aggregated estimates of the carbon balance of a region that can be meaningfully compared to those obtained from the smallest downscaled information of atmospheric measurements and continental-scale inversions. We deployed several aircraft to sample the CO2 concentration and fluxes over the whole area, while fixed stations observed the fluxes and concentrations at high accuracy. Several (mesoscale) meteorological modeling tools were used to plan the experiment and flight patterns.
Results show that at regional scale the relation between profiles and fluxes is not obvious, and is strongly influenced by airmass history and mesoscale flow patterns. In particular, we show from an analysis of data for a single day that taking either the concentration at several locations as representative of local fluxes or taking the flux measurements at those sites as representative of larger regions would lead to incorrect conclusions about the distribution of sources and sinks of carbon. Joint consideration of the synoptic and regional flow, fluxes, and land surface is required for a correct interpretation. This calls for an experimental and modeling strategy that takes into account the large spatial gradients in concentrations and the variability in sources and sinks that arise from different land use types. We briefly describe how such an analysis can be performed and evaluate the usefulness of the data for planning of future networks or longer campaigns with reduced experimental efforts.
Quantification of sources and sinks of carbon at global and regional scales requires not only a good description of the land sources and sinks of carbon, but also of the synoptic and mesoscale meteorology. An experiment was performed in Les Landes, southwest France, during May–June 2005, to determine the variability in concentration gradients and fluxes of CO2 The CarboEurope Regional Experiment Strategy (CERES; see also http://carboregional.mediasfrance.org/index) aimed to produce aggregated estimates of the carbon balance of a region that can be meaningfully compared to those obtained from the smallest downscaled information of atmospheric measurements and continental-scale inversions. We deployed several aircraft to sample the CO2 concentration and fluxes over the whole area, while fixed stations observed the fluxes and concentrations at high accuracy. Several (mesoscale) meteorological modeling tools were used to plan the experiment and flight patterns.
Results show that at regional scale the relation between profiles and fluxes is not obvious, and is strongly influenced by airmass history and mesoscale flow patterns. In particular, we show from an analysis of data for a single day that taking either the concentration at several locations as representative of local fluxes or taking the flux measurements at those sites as representative of larger regions would lead to incorrect conclusions about the distribution of sources and sinks of carbon. Joint consideration of the synoptic and regional flow, fluxes, and land surface is required for a correct interpretation. This calls for an experimental and modeling strategy that takes into account the large spatial gradients in concentrations and the variability in sources and sinks that arise from different land use types. We briefly describe how such an analysis can be performed and evaluate the usefulness of the data for planning of future networks or longer campaigns with reduced experimental efforts.
Abstract
The NCEP CFSv2 ensemble reforecasts initialized with different land surface analyses for the period of 1979–2010 have been conducted to assess the effect of uncertainty in land initial states on surface air temperature prediction. The two observation-based land initial states are adapted from the NCEP CFS Reanalysis (CFSR) and the NASA GLDAS-2 analysis; atmosphere, ocean, and ice initial states are identical for both reforecasts. This identical-twin experiment confirms that the prediction skill of surface air temperature is sensitive to the uncertainty of land initial states, especially in soil moisture and snow cover. There is no distinct characteristic that determines which set of the reforecasts performs better. Rather, the better performer varies with the lead week and location for each season. Estimates of soil moisture between the two land initial states are significantly different with an apparent north–south contrast for almost all seasons, causing predicted surface air temperature discrepancies between the two sets of reforecasts, particularly in regions where the magnitude of initial soil moisture difference lies in the top quintile. In boreal spring, inconsistency of snow cover between the two land initial states also plays a critical role in enhancing the discrepancy of predicted surface air temperature from week 5 to week 8. Our results suggest that a reduction of the uncertainty in land surface properties among the current land surface analyses will be beneficial to improving the prediction skill of surface air temperature on subseasonal time scales. Implications of a multiple land surface analysis ensemble are also discussed.
Abstract
The NCEP CFSv2 ensemble reforecasts initialized with different land surface analyses for the period of 1979–2010 have been conducted to assess the effect of uncertainty in land initial states on surface air temperature prediction. The two observation-based land initial states are adapted from the NCEP CFS Reanalysis (CFSR) and the NASA GLDAS-2 analysis; atmosphere, ocean, and ice initial states are identical for both reforecasts. This identical-twin experiment confirms that the prediction skill of surface air temperature is sensitive to the uncertainty of land initial states, especially in soil moisture and snow cover. There is no distinct characteristic that determines which set of the reforecasts performs better. Rather, the better performer varies with the lead week and location for each season. Estimates of soil moisture between the two land initial states are significantly different with an apparent north–south contrast for almost all seasons, causing predicted surface air temperature discrepancies between the two sets of reforecasts, particularly in regions where the magnitude of initial soil moisture difference lies in the top quintile. In boreal spring, inconsistency of snow cover between the two land initial states also plays a critical role in enhancing the discrepancy of predicted surface air temperature from week 5 to week 8. Our results suggest that a reduction of the uncertainty in land surface properties among the current land surface analyses will be beneficial to improving the prediction skill of surface air temperature on subseasonal time scales. Implications of a multiple land surface analysis ensemble are also discussed.
Abstract
The terrestrial and oceanic sources of moisture that supply warm-season rainfall to the Mississippi River basin and its subbasins are examined over a 36-yr period (1963–98). Using hourly observed precipitation, National Centers for Environmental Prediction (NCEP) reanalyses at 6-h intervals, and a back-trajectory algorithm, the water falling during observed precipitation events is probabilistically traced to its most recent surface evaporative source, terrestrial or oceanic. Maps of these sources generally show dual maxima, one terrestrial and one oceanic, in spring and a dominance of terrestrial sources in summer. Pentad time series averaged over the 36 years show a late-summer maximum of precipitation recycling in all but the Missouri subbasin. During the 36 years analyzed, 32% of warm-season precipitation in the entire Mississippi basin originated as evaporation within the basin (recycled). About 20% of warm-season precipitation was contributed directly by evaporation from the Gulf of Mexico and Caribbean. The Midwest flood year, 1993, represents a positive outlier in terms of July precipitation supplied to the Upper Mississippi directly by evaporation from the Caribbean. The monthly recycling ratios for warm-season precipitation during the drought year, 1988, represent extreme values in the time series but are not identified as outliers. A positive trend in precipitation recycling in the Upper Mississippi and Missouri subbasins and accompanying decrease in Gulf of Mexico/Caribbean–supplied precipitation to those regions are statistically significant but may reflect changes in the observational data stream assimilated by the NCEP model. Perturbation analysis demonstrates that the source fractions and recycling ratios are somewhat sensitive to systematic errors but not to random errors in the model-derived evapotranspiration (ET), arguably the largest source of uncertainty in the back-trajectory approach. Systematic errors in terrestrial ET on the order of 20% introduce errors of about 0.02 in land source fractions (including recycling ratios) that are themselves on the order of 0.10–0.30.
Abstract
The terrestrial and oceanic sources of moisture that supply warm-season rainfall to the Mississippi River basin and its subbasins are examined over a 36-yr period (1963–98). Using hourly observed precipitation, National Centers for Environmental Prediction (NCEP) reanalyses at 6-h intervals, and a back-trajectory algorithm, the water falling during observed precipitation events is probabilistically traced to its most recent surface evaporative source, terrestrial or oceanic. Maps of these sources generally show dual maxima, one terrestrial and one oceanic, in spring and a dominance of terrestrial sources in summer. Pentad time series averaged over the 36 years show a late-summer maximum of precipitation recycling in all but the Missouri subbasin. During the 36 years analyzed, 32% of warm-season precipitation in the entire Mississippi basin originated as evaporation within the basin (recycled). About 20% of warm-season precipitation was contributed directly by evaporation from the Gulf of Mexico and Caribbean. The Midwest flood year, 1993, represents a positive outlier in terms of July precipitation supplied to the Upper Mississippi directly by evaporation from the Caribbean. The monthly recycling ratios for warm-season precipitation during the drought year, 1988, represent extreme values in the time series but are not identified as outliers. A positive trend in precipitation recycling in the Upper Mississippi and Missouri subbasins and accompanying decrease in Gulf of Mexico/Caribbean–supplied precipitation to those regions are statistically significant but may reflect changes in the observational data stream assimilated by the NCEP model. Perturbation analysis demonstrates that the source fractions and recycling ratios are somewhat sensitive to systematic errors but not to random errors in the model-derived evapotranspiration (ET), arguably the largest source of uncertainty in the back-trajectory approach. Systematic errors in terrestrial ET on the order of 20% introduce errors of about 0.02 in land source fractions (including recycling ratios) that are themselves on the order of 0.10–0.30.
Abstract
In addition to remote SST forcing, realistic representation of land forcing (i.e., soil moisture) over the United States is critical for a prediction of U.S. severe drought events approximately one season in advance. Using “identical twin” experiments with different land initial conditions (ICs) in the 32-yr (1979–2010) CFSv2 reforecasts (NASA GLDAS-2 reanalysis versus NCEP CFSR), sensitivity and skill of U.S. drought predictions to land ICs are evaluated. Although there is no outstanding performer between the two sets of forecasts with different land ICs, each set shows greater skill in some regions, but their locations vary with forecast lead time and season. The 1999 case study demonstrates that although a pattern of below-normal SSTs in the Pacific in the fall and winter is realistically reproduced in both reforecasts, GLDAS-2 land initial states display a stronger east–west gradient of soil moisture, particularly drier in the eastern United States and more consistent with observations, leading to warmer surface temperature anomalies over the United States. Anomalies lasting for one season are accompanied by more persistent barotropic (warm core) anomalous high pressure over CONUS, which results in better prediction skill of this drought case up to 4 months in advance in the reforecasts with GLDAS-2 land ICs. Therefore, it is essential to minimize the uncertainty of land initial states among the current land analyses for improving U.S. drought prediction on seasonal time scales.
Abstract
In addition to remote SST forcing, realistic representation of land forcing (i.e., soil moisture) over the United States is critical for a prediction of U.S. severe drought events approximately one season in advance. Using “identical twin” experiments with different land initial conditions (ICs) in the 32-yr (1979–2010) CFSv2 reforecasts (NASA GLDAS-2 reanalysis versus NCEP CFSR), sensitivity and skill of U.S. drought predictions to land ICs are evaluated. Although there is no outstanding performer between the two sets of forecasts with different land ICs, each set shows greater skill in some regions, but their locations vary with forecast lead time and season. The 1999 case study demonstrates that although a pattern of below-normal SSTs in the Pacific in the fall and winter is realistically reproduced in both reforecasts, GLDAS-2 land initial states display a stronger east–west gradient of soil moisture, particularly drier in the eastern United States and more consistent with observations, leading to warmer surface temperature anomalies over the United States. Anomalies lasting for one season are accompanied by more persistent barotropic (warm core) anomalous high pressure over CONUS, which results in better prediction skill of this drought case up to 4 months in advance in the reforecasts with GLDAS-2 land ICs. Therefore, it is essential to minimize the uncertainty of land initial states among the current land analyses for improving U.S. drought prediction on seasonal time scales.
Abstract
The operational coupled land–atmosphere forecast model from the National Centers for Environmental Prediction (NCEP) is evaluated for the strength and characteristics of its coupling in the water cycle between land and atmosphere. Following the protocols of the Global Land–Atmosphere Coupling Experiment (GLACE) it is found that the Global Forecast System (GFS) atmospheric model coupled to the Noah land surface model exhibits extraordinarily weak land–atmosphere coupling, much as its predecessor, the GFS–Oregon State University (OSU) coupled system. The coupling strength is evaluated by the ability of subsurface soil wetness to affect locally the time series of precipitation. The surface fluxes in Noah are also found to be rather insensitive to subsurface soil wetness. Comparison to another atmospheric model coupled to Noah as well as a different land surface model show that Noah is responsible for some of the lack of sensitivity, primarily because its thick (10 cm) surface layer dominates the variability in surface latent heat fluxes. Noah is found to be as responsive as other land surface models to surface soil wetness and temperature variations, suggesting the design of the GLACE sensitivity experiment (based only on subsurface soil wetness) handicapped the Noah model. Additional experiments, in which the parameterization of evapotranspiration is altered, as well as experiments where surface soil wetness is also constrained, isolate the GFS atmospheric model as the principal source of the weak sensitivity of precipitation to land surface states.
Abstract
The operational coupled land–atmosphere forecast model from the National Centers for Environmental Prediction (NCEP) is evaluated for the strength and characteristics of its coupling in the water cycle between land and atmosphere. Following the protocols of the Global Land–Atmosphere Coupling Experiment (GLACE) it is found that the Global Forecast System (GFS) atmospheric model coupled to the Noah land surface model exhibits extraordinarily weak land–atmosphere coupling, much as its predecessor, the GFS–Oregon State University (OSU) coupled system. The coupling strength is evaluated by the ability of subsurface soil wetness to affect locally the time series of precipitation. The surface fluxes in Noah are also found to be rather insensitive to subsurface soil wetness. Comparison to another atmospheric model coupled to Noah as well as a different land surface model show that Noah is responsible for some of the lack of sensitivity, primarily because its thick (10 cm) surface layer dominates the variability in surface latent heat fluxes. Noah is found to be as responsive as other land surface models to surface soil wetness and temperature variations, suggesting the design of the GLACE sensitivity experiment (based only on subsurface soil wetness) handicapped the Noah model. Additional experiments, in which the parameterization of evapotranspiration is altered, as well as experiments where surface soil wetness is also constrained, isolate the GFS atmospheric model as the principal source of the weak sensitivity of precipitation to land surface states.
Abstract
The strength of the coupling between the land and the atmosphere, which controls, for example, the degree to which precipitation-induced soil moisture anomalies affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated coupling strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective intermodel comparison of land–atmosphere coupling strength, focusing on short (weekly down to subhourly) timescales. The experiment essentially consists of an ensemble of 1-month simulations in which each member simulation artificially maintains the same (model specific) time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicate the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that coupling strength does indeed vary significantly among the AGCMs.
Abstract
The strength of the coupling between the land and the atmosphere, which controls, for example, the degree to which precipitation-induced soil moisture anomalies affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated coupling strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective intermodel comparison of land–atmosphere coupling strength, focusing on short (weekly down to subhourly) timescales. The experiment essentially consists of an ensemble of 1-month simulations in which each member simulation artificially maintains the same (model specific) time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicate the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that coupling strength does indeed vary significantly among the AGCMs.
Abstract
The climate system model of the National Center for Atmospheric Research is used to examine the predictability arising from the land surface initialization of seasonal climate ensemble forecasts in current, preindustrial, and projected future settings. Predictability is defined in terms of the model's ability to predict its own interannual variability. Predictability from the land surface in this model is relatively weak compared to estimates from other climate models but has much of the same spatial and temporal structure found in previous studies. Several factors appear to contribute to the weakness, including a low correlation between surface fluxes and subsurface soil moisture, less soil moisture memory (lagged autocorrelation) than other models or observations, and relative insensitivity of the atmospheric boundary layer to surface flux variations. Furthermore, subseasonal cyclical behavior in plant phenology for tropical grasses introduces spurious unrealistic predictability at low latitudes during dry seasons. Despite these shortcomings, intriguing changes in predictability are found. Areas of historical land use change appear to have experienced changes in predictability, particularly where agriculture expanded dramatically into the Great Plains of North America, increasing land-driven predictability there. In a warming future climate, land–atmosphere coupling strength generally increases, but added predictability does not always follow; many other factors modulate land-driven predictability.
Abstract
The climate system model of the National Center for Atmospheric Research is used to examine the predictability arising from the land surface initialization of seasonal climate ensemble forecasts in current, preindustrial, and projected future settings. Predictability is defined in terms of the model's ability to predict its own interannual variability. Predictability from the land surface in this model is relatively weak compared to estimates from other climate models but has much of the same spatial and temporal structure found in previous studies. Several factors appear to contribute to the weakness, including a low correlation between surface fluxes and subsurface soil moisture, less soil moisture memory (lagged autocorrelation) than other models or observations, and relative insensitivity of the atmospheric boundary layer to surface flux variations. Furthermore, subseasonal cyclical behavior in plant phenology for tropical grasses introduces spurious unrealistic predictability at low latitudes during dry seasons. Despite these shortcomings, intriguing changes in predictability are found. Areas of historical land use change appear to have experienced changes in predictability, particularly where agriculture expanded dramatically into the Great Plains of North America, increasing land-driven predictability there. In a warming future climate, land–atmosphere coupling strength generally increases, but added predictability does not always follow; many other factors modulate land-driven predictability.
Abstract
A set of ensemble seasonal reforecasts for 1958–2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2. In comparison with other current reforecasts, this dataset extends the seasonal reforecasts to the 1960s–70s. Direct comparison of the predictability of the ENSO events occurring during the 1960s–70s with the more widely studied ENSO events since then demonstrates the seasonal forecast system’s capability in different phases of multidecadal variability and degrees of global climate change. A major concern for a long reforecast is whether the seasonal reforecasts before 1979 provide useful skill when observations, particularly of the ocean, were sparser. This study demonstrates that, although the reforecasts have lower skill in predicting SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the onset and development of ENSO events in 1958–78 is comparable to that for 1979–2014. In particular, the ENSO predictions initialized in April during 1958–78 show higher skill in the summer. However, the skill of the earlier predictions declines faster in the ENSO decaying phase, because the reforecasts initialized after boreal summer persistently predict lingering wind and SST anomalies over the eastern equatorial Pacific during such events. Reforecasts initialized in boreal fall overestimate the peak SST anomalies of strong El Niño events since the 1980s. Both phenomena imply that the model’s air–sea feedback is overly active in the eastern Pacific before ENSO event termination. Whether these differences are due to changes in the observing system or are associated with flow-dependent predictability remains an open question.
Abstract
A set of ensemble seasonal reforecasts for 1958–2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2. In comparison with other current reforecasts, this dataset extends the seasonal reforecasts to the 1960s–70s. Direct comparison of the predictability of the ENSO events occurring during the 1960s–70s with the more widely studied ENSO events since then demonstrates the seasonal forecast system’s capability in different phases of multidecadal variability and degrees of global climate change. A major concern for a long reforecast is whether the seasonal reforecasts before 1979 provide useful skill when observations, particularly of the ocean, were sparser. This study demonstrates that, although the reforecasts have lower skill in predicting SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the onset and development of ENSO events in 1958–78 is comparable to that for 1979–2014. In particular, the ENSO predictions initialized in April during 1958–78 show higher skill in the summer. However, the skill of the earlier predictions declines faster in the ENSO decaying phase, because the reforecasts initialized after boreal summer persistently predict lingering wind and SST anomalies over the eastern equatorial Pacific during such events. Reforecasts initialized in boreal fall overestimate the peak SST anomalies of strong El Niño events since the 1980s. Both phenomena imply that the model’s air–sea feedback is overly active in the eastern Pacific before ENSO event termination. Whether these differences are due to changes in the observing system or are associated with flow-dependent predictability remains an open question.
The Common Land Model (CLM) was developed for community use by a grassroots collaboration of scientists who have an interest in making a general land model available for public use and further development. The major model characteristics include enough unevenly spaced layers to adequately represent soil temperature and soil moisture, and a multilayer parameterization of snow processes; an explicit treatment of the mass of liquid water and ice water and their phase change within the snow and soil system; a runoff parameterization following the TOPMODEL concept; a canopy photo synthesis-conductance model that describes the simultaneous transfer of CO2 and water vapor into and out of vegetation; and a tiled treatment of the subgrid fraction of energy and water balance. CLM has been extensively evaluated in offline mode and coupling runs with the NCAR Community Climate Model (CCM3). The results of two offline runs, presented as examples, are compared with observations and with the simulation of three other land models [the Biosphere-Atmosphere Transfer Scheme (BATS), Bonan's Land Surface Model (LSM), and the 1994 version of the Chinese Academy of Sciences Institute of Atmospheric Physics LSM (IAP94)].
The Common Land Model (CLM) was developed for community use by a grassroots collaboration of scientists who have an interest in making a general land model available for public use and further development. The major model characteristics include enough unevenly spaced layers to adequately represent soil temperature and soil moisture, and a multilayer parameterization of snow processes; an explicit treatment of the mass of liquid water and ice water and their phase change within the snow and soil system; a runoff parameterization following the TOPMODEL concept; a canopy photo synthesis-conductance model that describes the simultaneous transfer of CO2 and water vapor into and out of vegetation; and a tiled treatment of the subgrid fraction of energy and water balance. CLM has been extensively evaluated in offline mode and coupling runs with the NCAR Community Climate Model (CCM3). The results of two offline runs, presented as examples, are compared with observations and with the simulation of three other land models [the Biosphere-Atmosphere Transfer Scheme (BATS), Bonan's Land Surface Model (LSM), and the 1994 version of the Chinese Academy of Sciences Institute of Atmospheric Physics LSM (IAP94)].