Search Results

You are looking at 71 - 75 of 75 items for

  • Author or Editor: Hong Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Haibo Du
,
Markus G. Donat
,
Shengwei Zong
,
Lisa V. Alexander
,
Rodrigo Manzanas
,
Andries Kruger
,
Gwangyong Choi
,
Jim Salinger
,
Hong S. He
,
Mai-He Li
,
Fumiaki Fujibe
,
Banzragch Nandintsetseg
,
Shafiqur Rehman
,
Farhat Abbas
,
Matilde Rusticucci
,
Arvind Srivastava
,
Panmao Zhai
,
Tanya Lippmann
,
Ibouraïma Yabi
,
Michael C. Stambaugh
,
Shengzhong Wang
,
Altangerel Batbold
,
Priscilla Teles de Oliveira
,
Muhammad Adrees
,
Wei Hou
,
Claudio Moises Santos e Silva
,
Paulo Sergio Lucio
, and
Zhengfang Wu

Abstract

Extreme precipitation occurring on consecutive days may substantially increase the risk of related impacts, but changes in such events have not been studied at a global scale. Here we use a unique global dataset based on in situ observations and multimodel historical and future simulations to analyze the changes in the frequency of extreme precipitation on consecutive days (EPCD). We further disentangle the relative contributions of variations in precipitation intensity and temporal correlation of extreme precipitation to understand the processes that drive the changes in EPCD. Observations and climate model simulations show that the frequency of EPCD is increasing in most land regions, in particular, in North America, Europe, and the Northern Hemisphere high latitudes. These increases are primarily a consequence of increasing precipitation intensity, but changes in the temporal correlation of extreme precipitation regionally amplify or reduce the effects of intensity changes. Changes are larger in simulations with a stronger warming signal, suggesting that further increases in EPCD are expected for the future under continued climate warming.

Full access
Clare Eayrs
,
Won Sang Lee
,
Emilia Jin
,
Jean-François Lemieux
,
François Massonnet
,
Martin Vancoppenolle
,
Lorenzo Zampieri
,
Luke G. Bennetts
,
Ed Blockley
,
Eui-Seok Chung
,
Alexander D. Fraser
,
Yoo-geun Ham
,
Jungho Im
,
Baek-min Kim
,
Beong-Hoon Kim
,
Jinsuk Kim
,
Joo-Hong Kim
,
Seong-Joong Kim
,
Seung Hee Kim
,
Anton Korosov
,
Choon-Ki Lee
,
Donghyuck Lee
,
Hyun-Ju Lee
,
Jeong-Gil Lee
,
Jiyeon Lee
,
Jisung Na
,
In-woo Park
,
Jikang Park
,
Xianwei Wang
,
Shiming Xu
, and
Sukyoung Yun
Open access
Yongkang Xue
,
Ismaila Diallo
,
Aaron A. Boone
,
Tandong Yao
,
Yang Zhang
,
Xubin Zeng
,
J. David Neelin
,
William K. M. Lau
,
Yan Pan
,
Ye Liu
,
Xiaoduo Pan
,
Qi Tang
,
Peter J. van Oevelen
,
Tomonori Sato
,
Myung-Seo Koo
,
Stefano Materia
,
Chunxiang Shi
,
Jing Yang
,
Constantin Ardilouze
,
Zhaohui Lin
,
Xin Qi
,
Tetsu Nakamura
,
Subodh K. Saha
,
Retish Senan
,
Yuhei Takaya
,
Hailan Wang
,
Hongliang Zhang
,
Mei Zhao
,
Hara Prasad Nayak
,
Qiuyu Chen
,
Jinming Feng
,
Michael A. Brunke
,
Tianyi Fan
,
Songyou Hong
,
Paulo Nobre
,
Daniele Peano
,
Yi Qin
,
Frederic Vitart
,
Shaocheng Xie
,
Yanling Zhan
,
Daniel Klocke
,
Ruby Leung
,
Xin Li
,
Michael Ek
,
Weidong Guo
,
Gianpaolo Balsamo
,
Qing Bao
,
Sin Chan Chou
,
Patricia de Rosnay
,
Yanluan Lin
,
Yuejian Zhu
,
Yun Qian
,
Ping Zhao
,
Jianping Tang
,
Xin-Zhong Liang
,
Jinkyu Hong
,
Duoying Ji
,
Zhenming Ji
,
Yuan Qiu
,
Shiori Sugimoto
,
Weicai Wang
,
Kun Yang
, and
Miao Yu

Abstract

Subseasonal-to-seasonal (S2S) precipitation prediction in boreal spring and summer months, which contains a significant number of high-signal events, is scientifically challenging and prediction skill has remained poor for years. Tibetan Plateau (TP) spring observed surface ­temperatures show a lag correlation with summer precipitation in several remote regions, but current global land–atmosphere coupled models are unable to represent this behavior due to significant errors in producing observed TP surface temperatures. To address these issues, the Global Energy and Water Exchanges (GEWEX) program launched the “Impact of Initialized Land Temperature and Snowpack on Subseasonal-to-Seasonal Prediction” (LS4P) initiative as a community effort to test the impact of land temperature in high-mountain regions on S2S prediction by climate models: more than 40 institutions worldwide are participating in this project. After using an innovative new land state initialization approach based on observed surface 2-m temperature over the TP in the LS4P experiment, results from a multimodel ensemble provide evidence for a causal relationship in the observed association between the Plateau spring land temperature and summer precipitation over several regions across the world through teleconnections. The influence is underscored by an out-of-phase oscillation between the TP and Rocky Mountain surface temperatures. This study reveals for the first time that high-mountain land temperature could be a substantial source of S2S precipitation predictability, and its effect is probably as large as ocean surface temperature over global “hotspot” regions identified here; the ensemble means in some “hotspots” produce more than 40% of the observed anomalies. This LS4P approach should stimulate more follow-on explorations.

Free access
Toru Terao
,
Shinjiro Kanae
,
Hatsuki Fujinami
,
Someshwar Das
,
A. P. Dimri
,
Subashisa Dutta
,
Koji Fujita
,
Azusa Fukushima
,
Kyung-Ja Ha
,
Masafumi Hirose
,
Jinkyu Hong
,
Hideyuki Kamimera
,
Rijan Bhakta Kayastha
,
Masashi Kiguchi
,
Kazuyoshi Kikuchi
,
Hyun Mee Kim
,
Akio Kitoh
,
Hisayuki Kubota
,
Weiqiang Ma
,
Yaoming Ma
,
Milind Mujumdar
,
Masato I. Nodzu
,
Tomonori Sato
,
Z. Su
,
Shiori Sugimoto
,
Hiroshi G. Takahashi
,
Yuhei Takaya
,
Shuyu Wang
,
Kun Yang
,
Satoru Yokoi
,
Peter van Oevelen,
, and
Jun Matsumoto

Abstract

The Asian Precipitation Experiment (AsiaPEX) was initiated in 2019 to understand terrestrial precipitation over diverse hydroclimatological conditions for improved predictions, disaster reduction, and sustainable development across Asia under the framework of the Global Hydroclimatology Panel (GHP)/Global Energy and Water Exchanges (GEWEX). AsiaPEX is the successor to GEWEX Asian Monsoon Experiment (GAME; 1995–2005) and Monsoon Asian Hydro-Atmosphere Scientific Research and Prediction Initiative (MAHASRI; 2006–16). While retaining the key objectives of the aforementioned projects, the scientific targets of AsiaPEX focus on land–atmosphere coupling and improvements to the predictability of the Asian hydroclimatological system. AsiaPEX was designed for both fine-scale hydroclimatological processes occurring at the land surface and the integrated Asian hydroclimatological system characterized by multiscale interactions. We adopt six approaches including observation, process studies, scale interactions, high-resolution hydrological modeling, field campaigns, and climate projection, which bridge gaps in research activities conducted in different regions. Collaboration with mesoscale and global modeling researchers is one of the core methods in AsiaPEX. We review these strategies based on the literature and our initial outcomes. These include the estimation and validation of high-resolution satellite precipitation, investigations of extreme rainfall mechanisms, field campaigns over the Maritime Continent and Tibetan Plateau, areas of significant impact on the entire AsiaPEX region, process studies on diurnal- to interdecadal-scale interactions, and evaluation of the predictabilities of climate models for long-term variabilities. We will conduct integrated observational and modeling initiative, the Asian Monsoon Year (AMY)-II around 2025–28, whose strategies are the subregional observation platforms and integrated global analysis.

Open access
J. S. Reid
,
H. B. Maring
,
G. T. Narisma
,
S. van den Heever
,
L. Di Girolamo
,
R. Ferrare
,
P. Lawson
,
G. G. Mace
,
J. B. Simpas
,
S. Tanelli
,
L. Ziemba
,
B. van Diedenhoven
,
R. Bruintjes
,
A. Bucholtz
,
B. Cairns
,
M. O. Cambaliza
,
G. Chen
,
G. S. Diskin
,
J. H. Flynn
,
C. A. Hostetler
,
R. E. Holz
,
T. J. Lang
,
K. S. Schmidt
,
G. Smith
,
A. Sorooshian
,
E. J. Thompson
,
K. L. Thornhill
,
C. Trepte
,
J. Wang
,
S. Woods
,
S. Yoon
,
M. Alexandrov
,
S. Alvarez
,
C. G. Amiot
,
J. R. Bennett
,
M. Brooks
,
S. P. Burton
,
E. Cayanan
,
H. Chen
,
A. Collow
,
E. Crosbie
,
A. DaSilva
,
J. P. DiGangi
,
D. D. Flagg
,
S. W. Freeman
,
D. Fu
,
E. Fukada
,
M. R. A. Hilario
,
Y. Hong
,
S. M. Hristova-Veleva
,
R. Kuehn
,
R. S. Kowch
,
G. R. Leung
,
J. Loveridge
,
K. Meyer
,
R. M. Miller
,
M. J. Montes
,
J. N. Moum
,
A. Nenes
,
S. W. Nesbitt
,
M. Norgren
,
E. P. Nowottnick
,
R. M. Rauber
,
E. A. Reid
,
S. Rutledge
,
J. S. Schlosser
,
T. T. Sekiyama
,
M. A. Shook
,
G. A. Sokolowsky
,
S. A. Stamnes
,
T. Y. Tanaka
,
A. Wasilewski
,
P. Xian
,
Q. Xiao
,
Zhuocan Xu
, and
J. Zavaleta

Abstract

The NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) employed the NASA P-3, Stratton Park Engineering Company (SPEC) Learjet 35, and a host of satellites and surface sensors to characterize the coupling of aerosol processes, cloud physics, and atmospheric radiation within the Maritime Continent’s complex southwest monsoonal environment. Conducted in the late summer of 2019 from Luzon, Philippines, in conjunction with the Office of Naval Research Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment with its R/V Sally Ride stationed in the northwestern tropical Pacific, CAMP2Ex documented diverse biomass burning, industrial and natural aerosol populations, and their interactions with small to congestus convection. The 2019 season exhibited El Niño conditions and associated drought, high biomass burning emissions, and an early monsoon transition allowing for observation of pristine to massively polluted environments as they advected through intricate diurnal mesoscale and radiative environments into the monsoonal trough. CAMP2Ex’s preliminary results indicate 1) increasing aerosol loadings tend to invigorate congestus convection in height and increase liquid water paths; 2) lidar, polarimetry, and geostationary Advanced Himawari Imager remote sensing sensors have skill in quantifying diverse aerosol and cloud properties and their interaction; and 3) high-resolution remote sensing technologies are able to greatly improve our ability to evaluate the radiation budget in complex cloud systems. Through the development of innovative informatics technologies, CAMP2Ex provides a benchmark dataset of an environment of extremes for the study of aerosol, cloud, and radiation processes as well as a crucible for the design of future observing systems.

Open access