Search Results

You are looking at 71 - 80 of 84 items for

  • Author or Editor: Sukyoung Lee x
  • Refine by Access: All Content x
Clear All Modify Search
James J. Benedict
,
Sukyoung Lee
, and
Steven B. Feldstein

Abstract

This article investigates the synoptic characteristics of individual North Atlantic Oscillation (NAO) events by examining the daily evolution of the potential temperature field on the nominal tropopause (the 2-PVU surface). This quantity is obtained from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis dataset for the winter season.

For both phases, the NAO is found to originate from synoptic-scale waves. As these waves evolve into the low-frequency NAO pattern, they break anticyclonically for the positive phase and cyclonically for the negative phase. The results of this analysis suggest that it is the remnants of these breaking waves that form the physical entity of the NAO. Throughout the NAO events, for both phases, the NAO is maintained by the successive breaking of upstream synoptic-scale waves. When synoptic-scale disturbances are no longer present, mixing processes play an important role in the NAO decay. As in other recent studies of the NAO, it is found that these individual NAO events complete their life cycle in a time period of about two weeks.

Additional differences between the wave breaking characteristics of the two NAO phases are found. For the positive NAO phase, anticyclonic wave breaking takes place in two regions: one over the North Atlantic and the other near the North American west coast. For the negative NAO phase, on the other hand, there is a single breaking wave confined to the North Atlantic. An explanation based on kinematics is given to account for this difference.

Full access
Jiacan Yuan
,
Steven B. Feldstein
,
Sukyoung Lee
, and
Benkui Tan

Abstract

Boreal winter jet variability over the North Atlantic is investigated using 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data, where the variability is defined by the first EOF of the zonal wind on seven vertical levels. The principal component time series of this EOF is referred to as the jet index. A pattern correlation analysis indicates that the jet index more accurately describes intraseasonal North Atlantic zonal wind variability than does the North Atlantic Oscillation (NAO). A series of composite calculations of the jet index based on events of intraseasonal convective precipitation over the tropical Indian and western Pacific Oceans reveals the following statistically significant relationships: 1) negative jet events lead enhanced Indian Ocean precipitation, 2) positive jet events lag enhanced Indian Ocean precipitation, 3) positive jet events lead enhanced western Pacific Ocean precipitation, and 4) negative jet events lag enhanced western Pacific Ocean precipitation. These intraseasonal relationships are found to be linked through the circumglobal teleconnection pattern (CTP). Implications of the sign of the CTP being opposite to that of the jet index suggest that relationships 1 and 3 may arise from cold air surges associated with the CTP over these oceans. On interdecadal time scales, a much greater increase in the frequency of precipitation events from 1958 to 1979 (P1) to 1980 to 2001 (P2) was found for the Indian Ocean relative to the western Pacific Ocean. This observation, combined with relationships 2 and 4, leads to the suggestion that this change in the frequency of intraseasonal Indian Ocean precipitation events may make an important contribution to the excitation of interdecadal variability of the North Atlantic jet.

Full access
Min-Hee Lee
,
Sukyoung Lee
,
Hyo-Jong Song
, and
Chang-Hoi Ho

Abstract

This study has investigated the relationship between temperature extremes and a subseasonal hemispheric teleconnection pattern over the Northern Hemisphere during boreal summer. By applying self-organizing map (SOM) analysis to 200-hPa geopotential fields from the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) for the period 1979–2012, a teleconnection pattern is identified that increased dramatically in its occurrence after the late 1990s. This pattern is characterized by a zonal wavenumber-5 pattern with anomalous high pressure cores over eastern Europe, northeastern Asia, the eastern North Pacific, the eastern United States, and Greenland. These high pressure centers coincide with regions of increasingly frequent temperature extremes in recent decades. To investigate the temporal evolution of the identified SOM pattern, time-lagged composites were performed relative to the days in which the 200-hPa geopotential field most closely resembled the SOM pattern. From day −10 to day 0, a wave train propagated from the central tropical Pacific to the Canadian Arctic Archipelago and Greenland. This poleward wave propagation was followed by the establishment of quasi-stationary high pressure centers over Greenland, Europe, and Asia. This study suggests that more frequent occurrence of the hemispheric teleconnection is linked to more severe and longer extreme weather events over the Northern Hemisphere since the late 1990s.

Full access
Hyo-Seok Park
,
Sukyoung Lee
,
Seok-Woo Son
,
Steven B. Feldstein
, and
Yu Kosaka

Abstract

The surface warming in recent decades has been most rapid in the Arctic, especially during the winter. Here, by utilizing global reanalysis and satellite datasets, it is shown that the northward flux of moisture into the Arctic during the winter strengthens the downward infrared radiation (IR) by 30–40 W m−2 over 1–2 weeks. This is followed by a decline of up to 10% in sea ice concentration over the Greenland, Barents, and Kara Seas. A climate model simulation indicates that the wind-induced sea ice drift leads the decline of sea ice thickness during the early stage of the strong downward IR events, but that within one week the cumulative downward IR effect appears to be dominant. Further analysis indicates that strong downward IR events are preceded several days earlier by enhanced convection over the tropical Indian and western Pacific Oceans. This finding suggests that sea ice predictions can benefit from an improved understanding of tropical convection and ensuing planetary wave dynamics.

Full access
Matthew D. Flournoy
,
Steven B. Feldstein
,
Sukyoung Lee
, and
Eugene E. Clothiaux

Abstract

The Tropically Excited Arctic Warming (TEAM) mechanism ascribes warming of the Arctic surface to tropical convection, which excites poleward-propagating Rossby wave trains that transport water vapor and heat into the Arctic. A crucial component of the TEAM mechanism is the increase in downward infrared radiation (IR) that precedes the Arctic warming. Previous studies have examined the downward IR associated with the TEAM mechanism using reanalysis data. To corroborate previous findings, this study examines the linkage between tropical convection, Rossby wave trains, and downward IR with Baseline Surface Radiation Network (BSRN) downward IR station data. The physical processes that drive changes in the downward IR are also investigated by regressing 300-hPa geopotential height, outgoing longwave radiation, water vapor flux, ERA-Interim downward IR, and other key variables against the BSRN downward IR at Barrow, Alaska, and Ny-Ålesund, Spitsbergen.

Both the Barrow and the Ny-Ålesund station downward IR anomalies are preceded by anomalous tropical convection and poleward-propagating Rossby wave trains. The wave train associated with Barrow resembles the Pacific–North America teleconnection pattern, and that for Ny-Ålesund corresponds to a northwestern Atlantic wave train. It is found that both wave trains promote warm and moist advection from the midlatitudes into the Arctic. The resulting water vapor flux convergence, multiplied by the latent heat of vaporization, closely resembles the regressed ERA-Interim downward IR. These results suggest that the combination of warm advection, latent heat release, and increased cloudiness all contribute toward an increase in downward IR.

Full access
Joseph P. Clark
,
Vivek Shenoy
,
Steven B. Feldstein
,
Sukyoung Lee
, and
Michael Goss

Abstract

The wintertime (December–February) 1990–2016 Arctic surface air temperature (SAT) trend is examined using self-organizing maps (SOMs). The high-dimensional SAT dataset is reduced into nine representative SOM patterns, with each pattern exhibiting a decorrelation time scale of about 10 days and having about 85% of its variance coming from intraseasonal time scales. The trend in the frequency of occurrence of each SOM pattern is used to estimate the interdecadal Arctic winter warming trend associated with the SOM patterns. It is found that trends in the SOM patterns explain about one-half of the SAT trend in the Barents and Kara Seas, one-third of the SAT trend around Baffin Bay, and two-thirds of the SAT trend in the Chukchi Sea. A composite calculation of each term in the thermodynamic energy equation for each SOM pattern shows that the SAT anomalies grow primarily through the advection of the climatological temperature by the anomalous wind. This implies that a substantial fraction of Arctic amplification is due to horizontal temperature advection that is driven by changes in the atmospheric circulation. An analysis of the surface energy budget indicates that the skin temperature anomalies as well as the trend, although very similar to that of the SAT, are produced primarily by downward longwave radiation.

Full access
Sergey Kravtsov
,
John E. Ten Hoeve
,
Steven B. Feldstein
,
Sukyoung Lee
, and
Seok-Woo Son

Abstract

Simulations using an idealized, atmospheric general circulation model (GCM) subjected to various thermal forcings are analyzed via a combination of probability density function (PDF) estimation and spectral analysis techniques. Seven different GCM runs are examined, each model run being characterized by different values in the strength of the tropical heating and high-latitude cooling. For each model run, it is shown that a linear stochastic model constructed in the phase space of the ten leading empirical orthogonal functions (EOFs) of the zonal-mean zonal flow provides an excellent statistical approximation to the simulated zonal flow variability, which includes zonal index fluctuations, and quasi-oscillatory, poleward, zonal-mean flow anomaly propagation. Statistically significant deviations from the above linear stochastic null hypothesis arise in the form of a few anomalously persistent, or statistically nonlinear, flow patterns, which occupy particular regions of the model’s phase space. Some of these nonlinear regimes occur during certain phases of the poleward propagation; however, such an association is, in general, weak. This indicates that the regimes and oscillations in the model may be governed by distinct dynamical mechanisms.

Full access
Byung-Ju Sohn
,
Sukyoung Lee
,
Eui-Seok Chung
, and
Hwan-Jin Song

Abstract

There is an uncertainty in how the Pacific Walker circulation (PWC) will change in response to increased greenhouse gas (GHG) warming. On average, climate models predict that the PWC will weaken. Observational evidence is mixed, with some evidence supporting the models while others do not. In this study, insight into the PWC trend is provided by examining the tropical dry static stability, a quantity that is inversely proportional to the strength of the PWC. For the 1979–2012 period, the static stability increased markedly in all phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, far more so than in the satellite and global reanalysis data, which show a strengthening of the PWC. The stabilization is greater for a subset of models that simulate a significant weakening of the PWC.

With the observed sea surface temperature as the lower boundary condition, over the western tropical Pacific, atmospheric models that belong to the weakening-PWC-CMIP5 group produce greater stabilization than those that belong to the strengthening-PWC-CMIP5 group. Compared with the latter group, the former group of atmospheric models simulates weaker trade winds over the western and central tropical Pacific and, consistent with the Bjerknes mechanism, the corresponding CMIP5 models produce a weaker west–east gradient in tropical SST. Given that the models’ convective parameterizations overstabilize the atmosphere compared with an explicit convection, the findings here suggest that the models’ representations of tropical convection and stability contribute to the models’ tendency to simulate a weakening of the PWC and an El Niño–like SST.

Full access
Benkui Tan
,
Jiacan Yuan
,
Ying Dai
,
Steven B. Feldstein
, and
Sukyoung Lee

Abstract

The eastern Pacific (EP) pattern is a recently detected atmospheric teleconnection pattern that frequently occurs during late winter. Through analysis of daily ERA-Interim data and outgoing longwave radiation data for the period of 1979–2011, it is shown here that the formation of the EP is preceded by an anomalous tropical convection dipole, with one extremum located over the eastern Indian Ocean–Maritime Continent and the other over the central Pacific. This is followed by the excitation of two quasi-stationary Rossby wave trains. Departing from the subtropics, north of the region of anomalous convection, one Rossby wave train propagates eastward along the East Asian jet from southern China toward the eastern Pacific. The second wave train propagates northward from east of Japan toward eastern Siberia and then turns southeastward to the Gulf of Alaska. Both wave trains are associated with wave activity flux convergence where the EP pattern develops. The results from an examination of the E vector suggest that the EP undergoes further growth with the aid of positive feedback from high-frequency transient eddies. The frequency of occurrence of the dipole convection anomaly increases significantly from early to late winter, a finding that suggests that it is the seasonal change in the convection anomaly that accounts for the EP being more dominant in late winter.

Full access
Seok-Woo Son
,
Sukyoung Lee
,
Steven B. Feldstein
, and
John E. Ten Hoeve

Abstract

The physical processes that determine the time scale of zonal-mean-flow variability are examined with an idealized numerical model that has a zonally symmetric lower boundary. In the part of the parameter space where the time-mean zonal flow is characterized by a single (double) jet, the dominant form of zonal-mean-flow variability is the zonal index (poleward propagation), and the time-mean potential vorticity gradient is found to be strong and sharp (weak and broad). The e-folding time scale of the zonal index is found to be close to 55 days, much longer than the observed 10-day time scale. The e-folding time scale of the poleward propagation is about 40 days. The long e-folding time scales for the zonal index are found to be consistent with an unrealistically strong and persistent eddy–zonal-mean-flow feedback. A calculation of the refractive index indicates that the background flow supports eddies that are trapped within midlatitudes, undergoing relatively little meridional propagation.

Additional model runs are performed with an idealized mountain to investigate whether zonal asymmetry can disrupt the eddy feedback. For single-jet states, the time scale is reduced to about 30 days if the mountain height is 4 km or less. The reduction in the time scale occurs because the stationary eddies excited by the mountain alter the background flow in a manner that leads to the replacement of zonal-index events by shorter-time-scale poleward propagation. With a 5-km mountain, the time scale reverts and increases to 105 days. This threshold behavior is again attributed to a sharpening of the background zonal jet, which arises from an extremely strong stationary wave momentum flux convergence. In contrast, for double-jet states, the time scale changes only slightly and the poleward propagation is maintained in all mountain runs.

Full access