Search Results

You are looking at 71 - 80 of 137 items for

  • Author or Editor: Wei Li x
  • Refine by Access: All Content x
Clear All Modify Search
Jianing Li
,
Qingxuan Yang
,
Hui Sun
,
Shuwen Zhang
,
Lingling Xie
,
Qingye Wang
,
Wei Zhao
, and
Jiwei Tian

Abstract

This study focuses on the statistical features of dissipation flux coefficient Γ in the upper South China Sea (SCS). Based on the microscale measurements collected at 158 stations in the upper SCS and derived dissipation rates of turbulent kinetic energy and temperature variance ε and χT , via a modified method, we estimate Γ and analyze its spatiotemporal variation in an energetic and a quiescent region. We show that Γ is highly variable, which scatters over three orders of magnitude from 10−2 to 101 in both regions. Ιn the energetic region, Γ is slightly greater than in the quiescent region; their median values are 0.23 and 0.17, respectively. Vertically, Γ presents a clear increasing tendency with depth in both regions, though the increasing rate is greater in the energetic region than in the quiescent region. In the upper SCS, Γ positively depends on the buoyancy Reynolds number Re b and negatively depends on the ratio of the Ozmidov scale to the Thorpe scale R OT and is scaled as Γ Re b 1 / 2 R OT 4 / 3 , which holds for both regions. The vertical decreasing of R OT is observed, which yields parameterization of R OT = 10−0.002 z ; this parameterization improves the performance of the Thorpe-scale method by reducing at least 50% of the bias between the observed and parameterized ε. These results shed new light on the spatiotemporal variability and modulating mechanism of Γ in the upper ocean.

Significance Statement

The great global ocean conveyor is maintained by vertical mixing. Turbulent kinetic energy released by local internal wave breaking goes into two parts: one part is used to furnish this vertical mixing, and the rest is dissipated into irreversible heat. The ratio of these two parts is termed as the dissipation flux coefficient and is usually treated as a constant. Our measurements suggest that this coefficient is highly spatiotemporally variable. Specific relationships are obtained when scaling this coefficient with other parameters, and mechanisms modulating this coefficient are also explored. This study sheds light on how much turbulent kinetic energy contributes to elevating the potential energy and its associated influences not only in marginal seas but also in open oceans.

Restricted access
Xuhua Cheng
,
Lanman Li
,
Zhiyou Jing
,
Haijin Cao
,
Guidi Zhou
,
Wei Duan
, and
Yifei Zhou

Abstract

This study investigates the seasonal features and generation mechanisms of submesoscale processes (SMPs) in the southern Bay of Bengal (BoB) during 2011/12, based on the output of a high-resolution model, LLC4320 (latitude–longitude–polar cap). The results show that the southern BoB exhibits the most energetic SMPs, with significant seasonal variations. The SMPs are more active during the summer and winter monsoon periods. During the monsoon periods, the sharpening horizontal buoyancy gradients associated with strong straining effects favor the frontogenesis and mixed layer instability (MLI), which are responsible for the SMPs generation. The symmetric instability (SI) scale is about 3–10 km in the southern BoB, which can be partially resolved by LLC4320. The SI is more active during summer and winter, with a proportion of 40%–80% during the study period when the necessary conditions for SI are satisfied. Energetics analysis suggests that the energy source of SMPs is mainly from the local large-scale and mesoscale processes. Baroclinic instability at submesoscales plays a significant role, further confirming the importance of frontogenesis and MLI. Barotropic instability also has considerable contribution to the submesoscale kinetic energy, especially during summer.

Significance Statement

Submesoscale processes (SMPs) are ubiquitous in the Bay of Bengal (BoB). Affected by the seasonally reversing monsoon, abundant rainfall and runoff, and equatorial remote forcing, the upper circulation in the BoB is complex, featuring active mesoscale eddies and rich submesoscale phenomena, making the BoB a “natural test ground” for submesoscale studies. It is found in this work that characteristics of SMPs in the BoB are quite different from other regions. In the southern bay, SMPs are most active during the summer and winter monsoons due to the frontogenesis, enhanced mixed layer instability (MLI), and symmetric instability. These findings could deepen our understanding on multiscale dynamic processes and energy cascade in the BoB and have implications for the study of marine ecology and biogeochemical processes.

Restricted access
Stephen E. Lang
,
Wei-Kuo Tao
,
Jiun-Dar Chern
,
Di Wu
, and
Xiaowen Li

Abstract

Current cloud microphysical schemes used in cloud and mesoscale models range from simple one-moment to multimoment, multiclass to explicit bin schemes. This study details the benefits of adding a fourth ice class (frozen drops/hail) to an already improved single-moment three-class ice (cloud ice, snow, graupel) bulk microphysics scheme developed for the Goddard Cumulus Ensemble model. Besides the addition and modification of several hail processes from a bulk three-class hail scheme, further modifications were made to the three-ice processes, including allowing greater ice supersaturation and mitigating spurious evaporation/sublimation in the saturation adjustment scheme, allowing graupel/hail to transition to snow via vapor growth and hail to transition to graupel via riming, wet graupel to become hail, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved three-ice snow/graupel size-mapping schemes were adjusted to be more stable at higher mixing ratios and to increase the aggregation effect for snow. A snow density mapping was also added.

The new scheme was applied to an intense continental squall line and a moderate, loosely organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and moderate cases and were superior to earlier three-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier three-ice versions. The bin-based rain evaporation correction affected the squall line more but overall the agreement among the reflectivity distributions was unchanged. The new scheme also improved the simulated surface rain-rate histograms.

Full access
Xiaowen Li
,
Wei-Kuo Tao
,
Alexander P. Khain
,
Joanne Simpson
, and
Daniel E. Johnson

Abstract

A two-dimensional cloud-resolving model is used to study the sensitivities of two microphysical schemes, a bulk scheme and an explicit spectral bin scheme, in simulating a midlatitude summertime squall line [Preliminary Regional Experiment for Storm-Scale Operational and Research Meteorology (PRE-STORM), 10–11 June 1985]. In this first part of a two-part paper, the developing and mature stages of simulated storms are compared in detail. Some variables observed during the field campaign are also presented for validation. It is found that both schemes agree well with each other, and also with published observations and retrievals, in terms of storm structures and evolution, average storm flow patterns, pressure and temperature perturbations, and total heating profiles. The bin scheme is able to produce a much more extensive and homogeneous stratiform region, which compares better with observations.

However, instantaneous fields and high temporal resolution analyses show distinct characteristics in the two simulations. During the mature stage, the bulk simulation produces a multicell storm with convective cells embedded in its stratiform region. Its leading convection also shows a distinct life cycle (strong evolution). In contrast, the bin simulation produces a unicell storm with little temporal variation in its leading cell regeneration (weak evolution). More detailed, high-resolution observations are needed to validate and, perhaps, generalize these model results. Interactions between the cloud microphysics and storm dynamics that produce the sensitivities described here are discussed in detail in Part II of this paper.

Full access
Xiaowen Li
,
Wei-Kuo Tao
,
Alexander P. Khain
,
Joanne Simpson
, and
Daniel E. Johnson

Abstract

Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near-surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization.

An empirical formula for a correction factor, r(q r ) = 0.11q r −1.27 + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and qr (g kg−1) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.

Full access
Liqi Chen
,
Wei Li
,
Jianqiong Zhan
,
Jianjun Wang
,
Yuanhui Zhang
, and
Xulin Yang

Abstract

To investigate the concentrations, sources, and temporal variations of atmospheric black carbon (BC) in the summer Arctic, routine ground-level observations of BC by optical absorption were made in the summer from 2005 to 2008 at the Chinese Arctic “Yellow River” Station (78°55′N, 11°56′E) at Ny-Ålesund on the island of Spitsbergen in the Svalbard Archipelago. Methods of the ensemble empirical-mode decomposition analysis and back-trajectory analysis were employed to assess temporal variation embedded in the BC datasets and airmass transport patterns. The 10th-percentile and median values of BC concentrations were 7.2 and 14.6 ng m−3, respectively, and hourly average BC concentrations ranged from 2.5 to 54.6 ng m−3. A gradual increase was found by 4 ng m−3 a−1. This increase was not seen in the Zeppelin Station and it seemed to contrast with the prevalent conception of generally decreasing BC concentration since 1989 in the Arctic. Factors responsible for this increase such as changes in emissions and atmospheric transport were taken into consideration. The result indicated that BC from local emissions was mostly responsible for the observed increase from 2005 to 2008. BC temporal variation in the summer was controlled by the atmospheric circulation, which presented a significant 6–14-day variation and coherent with 1–3- and 2–5-day and longer cycle variation. Although the atmospheric circulation changes from 2005 to 2008, there was not a marked trend in long-range transportation of BC. This study suggested that local emissions might have significant implication for the regional radiative energy balance at Ny-Ålesund.

Full access
Zhenyi Lin
,
Nan Chen
,
Yongzhen Fan
,
Wei Li
,
Knut Stamnes
, and
Snorre Stamnes

Abstract

The treatment of strongly anisotropic scattering phase functions is still a challenge for accurate radiance computations. The new delta-M+ method resolves this problem by introducing a reliable, fast, accurate, and easy-to-use Legendre expansion of the scattering phase function with modified moments. Delta-M+ is an upgrade of the widely used delta-M method that truncates the forward scattering peak with a Dirac delta function, where the “+” symbol indicates that it essentially matches moments beyond the first M terms. Compared with the original delta-M method, delta-M+ has the same computational efficiency, but for radiance computations, the accuracy and stability have been increased dramatically.

Full access
Yiwen Pan
,
Yifan Li
,
Wei Fan
,
Dahai Zhang
,
Yongfa Qiang
,
Zong-Pei Jiang
, and
Ying Chen

Abstract

Artificial upwelling (AU), as one of the geoengineering tools, has received worldwide attention because of its potential ability to actualize ocean fertilization in a sustainable way. The severe challenges of AU are the design and fabrication of a technologically robust device with structural longevity that can maintain the function in the variable and complex hydrodynamics of the upper ocean. In this work, a sea trial of an air-lift concept AU system driven by self-powered energy was carried out in the East China Sea (ECS; 30°8′14″N, 122°44′59″E) to assess the logistics of at-sea deployment and the durability of the equipment under extremely complex hydrodynamic conditions from 3 to 7 September 2014. Seawater below the thermocline layer was measured to be uplifted from approximately 30 m to the euphotic layer with a volumetric upwelling rate of 155.43 m3 h−1 and total inputs of 2.8 mol h−1 NO3 , 0.15 mol h−1 PO4 3−, and 4.41 mol h−1 SiO4 3−. A plume formed by cold, saline deep ocean water (DOW) was tracked by a drifting buoy system with a mixing ratio of 37%–51% DOW at the depth of 18–22 m, which conforms to the simulation results. During the AU’s application, disturbance in the vertical hydrological structure could be observed. However, diatom (Skeletonema costatum) blooming from somewhere in the outer ECS floated to the sea trial region on the second day after the AU’s application, which makes it hard to strip off the biochemical effects of AU from the effects of S. costatum bloom.

Full access
Yuxin Zhao
,
Dequan Yang
,
Wei Li
,
Chang Liu
,
Xiong Deng
,
Rixu Hao
, and
Zhongjie He

Abstract

A spatiotemporal empirical orthogonal function (STEOF) forecast method is proposed and used in medium- to long-term sea surface height anomaly (SSHA) forecast. This method embeds temporal information in empirical orthogonal function spatial patterns, effectively capturing the evolving spatial distribution of variables and avoiding the typical rapid accumulation of forecast errors. The forecast experiments are carried out for SSHA in the South China Sea to evaluate the proposed model. Experimental results demonstrate that the STEOF forecast method consistently outperforms the autoregressive integrated moving average (ARIMA), optimal climatic normal (OCN), and persistence prediction. The model accurately forecasts the intensity and location of ocean eddies, indicating its great potential for practical applications in medium- to long-term ocean forecasts.

Full access
Zhuofu Yu
,
Shuo Ma
,
Ding Han
,
Guanlin Li
,
Wei Yan
, and
Jingdong Liu

Abstract

The southwest vortex (SWV) is a critical weather system in China, but our knowledge of this system remains incomplete. Here, we investigate the cloud properties in the SWV. First, we search for the SWVs with time steps and center locations that are consistent between the SWV yearbook and ERA-Interim reanalysis data. Second, we supplement these SWVs’ life spans and movement paths. Third, we relocate the Fengyun (FY) satellite FY-4A cloud retrievals in the 10° × 10° region centered on each SWV and analyze the cloud occurrence frequency (COF), cloud-top height (CTH), and cloud optical thickness (COT). A distribution mode of cloud types is summarized from the COFs, with water clouds, supercooled clouds, mixed clouds, ice clouds, cirrus clouds, and overlap clouds occurring sequentially from west to east. The CTH probability density (PD) distribution features a significant north–south difference. In addition, the COT PD distributions exhibit a common trend: with increasing COT, the PD increases rapidly and then slowly before peaking, whereupon the PD decreases abruptly. From spring to summer, the region with the highest convective COF shifts from the northeast to the northwest, and an east–west gradient of the convective COF appears in autumn and winter. Furthermore, we investigate the cloud properties during SWV-related heavy rainfall. Heavy rain occurs mainly in the west of the SWV, and convective clouds are mainly in the northwest, partly in the southwest and near the SWV center. The average CTH in heavy rainfall is generally higher than 6 km, and the average COT is greater than 20.

Significance Statement

The southwest vortex (SWV) is an important weather system in China. However, we do not yet comprehensively know this weather system. The cloud properties can indicate the structures of weather systems and are key parameters in numerical weather prediction (NWP) models. Thus, investigating cloud properties is necessary and meaningful to understand the SWV and accurately predict SWV-related precipitation in NWP models. In this paper, a typical distribution mode of six cloud types in the SWV is summarized from the cloud occurrence frequency, and the distribution features of convective clouds, cloud-top height, and cloud optical thickness in the SWV are analyzed. Furthermore, the cloud properties in SWV-related heavy rain are also studied.

Free access