Search Results

You are looking at 71 - 80 of 91 items for

  • Author or Editor: Xuguang Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Nicholas A. Gasperoni
,
Xuguang Wang
,
Keith A. Brewster
, and
Frederick H. Carr

Abstract

The Nationwide Network of Networks (NNoN) concept was introduced by the National Research Council to address the growing need for a national mesoscale observing system and the continued advancement toward accurate high-resolution numerical weather prediction. The research test bed known as the Dallas–Fort Worth (DFW) Urban Demonstration Network was created to experiment with many kinds of mesoscale observations that could be used in a data assimilation system. Many nonconventional observations, including Earth Networks and Citizen Weather Observer Program surface stations, are combined with conventional operational data to form the test bed network. A principal component of the NNoN effort is the quantification of observation impact from several different sources of information. In this study, the GSI-based EnKF system was used together with the WRF-ARW Model to examine impacts of observations assimilated for forecasting convection initiation (CI) in the 3 April 2014 hail storm case. Data denial experiments tested the impact of high-frequency (5 min) assimilation of nonconventional data on the timing and location of CI and subsequent storm evolution. Results showed nonconventional observations were necessary to capture details in the dryline structure causing localized enhanced convergence and leading to CI. Diagnosis of denial-minus-control fields showed the cumulative influence each observing network had on the resulting CI forecast. It was found that most of this impact came from the assimilation of thermodynamic observations in sensitive areas along the dryline gradient. Accurate metadata were found to be crucial toward the future application of nonconventional observations in high-resolution assimilation and forecast systems.

Full access
Sijie Pan
,
Jidong Gao
,
David J. Stensrud
,
Xuguang Wang
, and
Thomas A. Jones

Abstract

In this study, the ensemble of three-dimensional variational data assimilation (En3DVar) method for convective-scale weather is adopted and evaluated using an idealized supercell storm simulated by the Weather Research and Forecasting (WRF) Model. Synthetic radar radial velocity, reflectivity, satellite-derived cloud water path (CWP), and total precipitable water (TPW) data are produced from the simulated supercell storm and then these data are assimilated into another WRF Model run that starts with no convection. Two types of experiments are performed. The first assimilates radar and satellite CWP data using a perfect storm environment. The second assimilates additional TPW data using a storm environment with dry bias. The first set of experiments indicates that incorporating CWP and radar data into the assimilation leads to a much faster initiation of supercell storms than found using radar data alone. Assimilating CWP data primarily improves the analyses of nonprecipitating hydrometeor variables. The results from the second set of experiments demonstrate the critical importance of the storm environment. When using the biased storm environment, assimilation of CWP and radar data enhances the analyses, but the forecast skill rapidly decreases over the subsequent 1-h forecast. Further experiments show that assimilating the TPW data has a large impact on storm environment that is essential to the accuracy of the storm forecasts. In general, the combination of radar data and satellite data within the En3DVar results in better analyses and forecasts than when only radar data are used, especially for an imperfect storm environment.

Full access
Tianyi Wang
,
Xiu-Qun Yang
,
Jiabei Fang
,
Xuguang Sun
, and
Xuejuan Ren

Abstract

This study investigates the role of air–sea interaction in the 30–60-day boreal summer intraseasonal oscillation (BSISO) over the western North Pacific with daily outgoing longwave radiation (OLR), CFSR, and OAFlux datasets for 1985–2009. The BSISO events are identified with the first principal component of 30–60-day bandpass filtered OLR anomalies. Composite analysis of these events reveals that during the northward migration of BSISO, the convection can interact with underlying sea surface temperature (SST). A near-quadrature phase relationship exists between the convection and SST anomalies. An active (a suppressed) convection tends to induce a cold (warm) underlying SST anomaly by reducing (increasing) downward solar radiation but a warm SST anomaly in its northern (southern) portion by reducing near-surface wind and upward latent and sensible heat fluxes, resulting in a 10-day delayed maximized warm SST anomaly ahead of the active convection. In turn, this warm SST anomaly tends to increase upward surface sensible and latent heat fluxes via amplifying sea–air temperature and humidity differences. This oceanic feedback acts to heat, moisten, and destabilize the low-level atmosphere, favoring the trigger of shallow convection, which can further develop into deep convection. The maximum warm SST anomaly lies in the southern (northern) portion of the convectively suppressed (enhanced) area, which weakens the anomalous descending motion in the southern portion of convectively suppressed area and preconditions the boundary layer to promote convection development in the northern portion of convectively enhanced area. Such a spatial and temporal phase relationship between the convection and SST anomalies suggest that air–sea interaction can play a delayed negative feedback role in the BSISO cycle and provide an alternative mechanism responsible for its northward propagation.

Open access
Hristo G. Chipilski
,
Xuguang Wang
,
David B. Parsons
,
Aaron Johnson
, and
Samuel K. Degelia

Abstract

There is a growing interest in the use of ground-based remote sensors for numerical weather prediction, which is sparked by their potential to address the currently existing observation gap within the planetary boundary layer. Nevertheless, open questions still exist regarding the relative importance of and synergy among various instruments. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, in terms of both the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors that can further limit the forecast value extracted from such networks.

Restricted access
Brett Roberts
,
Burkely T. Gallo
,
Israel L. Jirak
,
Adam J. Clark
,
David C. Dowell
,
Xuguang Wang
, and
Yongming Wang

Abstract

The High Resolution Ensemble Forecast v2.1 (HREFv2.1), an operational convection-allowing model (CAM) ensemble, is an “ensemble of opportunity” wherein forecasts from several independently designed deterministic CAMs are aggregated and postprocessed together. Multiple dimensions of diversity in the HREFv2.1 ensemble membership contribute to ensemble spread, including model core, physics parameterization schemes, initial conditions (ICs), and time lagging. In this study, HREFv2.1 forecasts are compared against the High Resolution Rapid Refresh Ensemble (HRRRE) and the Multiscale data Assimilation and Predictability (MAP) ensemble, two experimental CAM ensembles that ran during the 5-week Spring Forecasting Experiment (SFE) in spring 2018. The HRRRE and MAP are formally designed ensembles with spread achieved primarily through perturbed ICs. Verification in this study focuses on composite radar reflectivity and updraft helicity to assess ensemble performance in forecasting convective storms. The HREFv2.1 shows the highest overall skill for these forecasts, matching subjective real-time impressions from SFE participants. Analysis of the skill and variance of ensemble member forecasts suggests that the HREFv2.1 exhibits greater spread and more effectively samples model uncertainty than the HRRRE or MAP. These results imply that to optimize skill in forecasting convective storms at 1–2-day lead times, future CAM ensembles should employ either diverse membership designs or sophisticated perturbation schemes capable of representing model uncertainty with comparable efficacy.

Free access
Aaron Johnson
,
Xuguang Wang
,
Ming Xue
,
Fanyou Kong
,
Gang Zhao
,
Yunheng Wang
,
Kevin W. Thomas
,
Keith A. Brewster
, and
Jidong Gao

Abstract

Multiscale convection-allowing precipitation forecast perturbations are examined for two forecasts and systematically over 34 forecasts out to 30-h lead time using Haar Wavelet decomposition. Two small-scale initial condition (IC) perturbation methods are compared to the larger-scale IC and physics perturbations in an experimental convection-allowing ensemble. For a precipitation forecast driven primarily by a synoptic-scale baroclinic disturbance, small-scale IC perturbations resulted in little precipitation forecast perturbation energy on medium and large scales, compared to larger-scale IC and physics (LGPH) perturbations after the first few forecast hours. However, for a case where forecast convection at the initial time grew upscale into a mesoscale convective system (MCS), small-scale IC and LGPH perturbations resulted in similar forecast perturbation energy on all scales after about 12 h. Small-scale IC perturbations added to LGPH increased total forecast perturbation energy for this case. Averaged over 34 forecasts, the small-scale IC perturbations had little impact on large forecast scales while LGPH accounted for about half of the error energy on such scales. The impact of small-scale IC perturbations was also less than, but comparable to, the impact of LGPH perturbations on medium scales. On small scales, the impact of small-scale IC perturbations was at least as large as the LGPH perturbations. The spatial structure of small-scale IC perturbations affected the evolution of forecast perturbations, especially at medium scales. There was little systematic impact of the small-scale IC perturbations when added to LGPH. These results motivate further studies on properly sampling multiscale IC errors.

Full access
Kefeng Zhu
,
Yujie Pan
,
Ming Xue
,
Xuguang Wang
,
Jeffrey S. Whitaker
,
Stanley G. Benjamin
,
Stephen S. Weygandt
, and
Ming Hu

Abstract

A regional ensemble Kalman filter (EnKF) system is established for potential Rapid Refresh (RAP) operational application. The system borrows data processing and observation operators from the gridpoint statistical interpolation (GSI), and precalculates observation priors using the GSI. The ensemble square root Kalman filter (EnSRF) algorithm is used, which updates both the state vector and observation priors. All conventional observations that are used in the operational RAP GSI are assimilated. To minimize computational costs, the EnKF is run at ⅓ of the operational RAP resolution or about 40-km grid spacing, and its performance is compared to the GSI using the same datasets and resolution. Short-range (up to 18 h, the RAP forecast length) forecasts are verified against soundings, surface observations, and precipitation data. Experiments are run with 3-hourly assimilation cycles over a 9-day convectively active retrospective period from spring 2010. The EnKF performance was improved by extensive tuning, including the use of height-dependent covariance localization scales and adaptive covariance inflation. When multiple physics parameterization schemes are employed by the EnKF, forecast errors are further reduced, especially for relative humidity and temperature at the upper levels and for surface variables. The best EnKF configuration produces lower forecast errors than the parallel GSI run. Gilbert skill scores of precipitation forecasts on the 13-km RAP grid initialized from the 3-hourly EnKF analyses are consistently better than those from GSI analyses.

Full access
Yujie Pan
,
Kefeng Zhu
,
Ming Xue
,
Xuguang Wang
,
Ming Hu
,
Stanley G. Benjamin
,
Stephen S. Weygandt
, and
Jeffrey S. Whitaker

Abstract

A coupled ensemble square root filter–three-dimensional ensemble-variational hybrid (EnSRF–En3DVar) data assimilation (DA) system is developed for the operational Rapid Refresh (RAP) forecasting system. The En3DVar hybrid system employs the extended control variable method, and is built on the NCEP operational gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) framework. It is coupled with an EnSRF system for RAP, which provides ensemble perturbations. Recursive filters (RF) are used to localize ensemble covariance in both horizontal and vertical within the En3DVar. The coupled En3DVar hybrid system is evaluated with 3-h cycles over a 9-day period with active convection. All conventional observations used by operational RAP are included. The En3DVar hybrid system is run at ⅓ of the operational RAP horizontal resolution or about 40-km grid spacing, and its performance is compared to parallel GSI 3DVar and EnSRF runs using the same datasets and resolution. Short-term forecasts initialized from the 3-hourly analyses are verified against sounding and surface observations. When using equally weighted static and ensemble background error covariances and 40 ensemble members, the En3DVar hybrid system outperforms the corresponding GSI 3DVar and EnSRF. When the recursive filter coefficients are tuned to achieve a similar height-dependent localization as in the EnSRF, the En3DVar results using pure ensemble covariance are close to EnSRF. Two-way coupling between EnSRF and En3DVar did not produce noticeable improvement over one-way coupling. Downscaled precipitation forecast skill on the 13-km RAP grid from the En3DVar hybrid is better than those from GSI 3DVar analyses.

Full access
Thomas A. Jones
,
Patrick Skinner
,
Nusrat Yussouf
,
Kent Knopfmeier
,
Anthony Reinhart
,
Xuguang Wang
,
Kristopher Bedka
,
William Smith Jr.
, and
Rabindra Palikonda

Abstract

The increasing maturity of the Warn-on-Forecast System (WoFS) coupled with the now operational GOES-16 satellite allows for the first time a comprehensive analysis of the relative impacts of assimilating GOES-16 all-sky 6.2-, 6.9-, and 7.3-μm channel radiances compared to other radar and satellite observations. The WoFS relies on cloud property retrievals such as cloud water path, which have been proven to increase forecast skill compared to only assimilating radar data and other conventional observations. The impacts of assimilating clear-sky radiances have also been explored and shown to provide useful information on midtropospheric moisture content in the near-storm environment. Assimilation of all-sky radiances adds a layer of complexity and is tested to determine its effectiveness across four events occurring in the spring and summer of 2019. Qualitative and object-based verification of severe weather and the near-storm environment are used to assess the impact of assimilating all-sky radiances compared to the current model configuration. We focus our study through the entire WoFS analysis and forecasting cycle (1900–0600 UTC, daily) so that the impacts throughout the evolution of convection from initiation to large upscale growth can be assessed. Overall, assimilating satellite data improves forecasts relative to radar-only assimilation experiments. The retrieval method with clear-sky radiances performs best overall, but assimilating all-sky radiances does have very positive impacts in certain conditions. In particular, all-sky radiance assimilation improved convective initiation forecast of severe storms in several instances. This work represents an initial attempt at assimilating all-sky radiances into the WoFS and additional research is ongoing to further improve forecast skill.

Free access
Yu Zhang
,
Yang Hong
,
Xuguang Wang
,
Jonathan J. Gourley
,
Xianwu Xue
,
Manabendra Saharia
,
Guangheng Ni
,
Gaili Wang
,
Yong Huang
,
Sheng Chen
, and
Guoqiang Tang

Abstract

Prediction, and thus preparedness, in advance of flood events is crucial for proactively reducing their impacts. In the summer of 2012, Beijing, China, experienced extreme rainfall and flooding that caused 79 fatalities and economic losses of $1.6 billion. Using rain gauge networks as a benchmark, this study investigated the detectability and predictability of the 2012 Beijing event via the Global Hydrological Prediction System (GHPS), forced by the NASA Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis at near–real time and by the deterministic and ensemble precipitation forecast products from the NOAA Global Forecast System (GFS) at several lead times. The results indicate that the disastrous flooding event was detectable by the satellite-based global precipitation observing system and predictable by the GHPS forced by the GFS 4 days in advance. However, the GFS demonstrated inconsistencies from run to run, limiting the confidence in predicting the extreme event. The GFS ensemble precipitation forecast products from NOAA for streamflow forecasts provided additional information useful for estimating the probability of the extreme event. Given the global availability of satellite-based precipitation in near–real time and GFS precipitation forecast products at varying lead times, this study demonstrates the opportunities and challenges that exist for an integrated application of GHPS. This system is particularly useful for the vast ungauged regions of the globe.

Full access