Search Results

You are looking at 71 - 80 of 136 items for

  • Author or Editor: Yao Yao x
  • Refine by Access: All Content x
Clear All Modify Search
Haijun Yang, Xingchen Shen, Jie Yao, and Qin Wen

Abstract

As the most extensive highland in the world, the Tibetan Plateau (TP) plays an important role in shaping the global climate. Quantifying the effect of the TP on global climate is the first step for a full understanding of the TP’s standing on planet Earth. Through coupled model sensitivity experiments, we draw a panorama of the TP’s global impact in this paper. Our model results show that the absence of the TP would result in a 4°C colder and 10% drier climate in the Northern Hemisphere (NH). The TP has a striking remote effect on the North Atlantic. Removing the TP would enhance the westerlies in the mid- to high latitudes of the NH and weaken the easterlies over the tropical Pacific. More moisture would be relocated from the tropical Pacific to the North Atlantic, shutting down the Atlantic thermohaline circulation, which would eventually result in more than 15°C colder and 20% drier climate over the North Atlantic. Our model results suggest that the presence of the TP may have contributed greatly to the hospitable modern climate in the NH, by promoting the establishment of the thermohaline circulation in the Atlantic, and therefore enhancing the northward ocean heat transport and atmosphere moisture transport across the equator.

Open access
Haijun Yang, Qin Wen, Jie Yao, and Yuxing Wang

Abstract

Using a coupled Earth climate model, freshwater forcing experiments are performed to study the Bjerknes compensation (BJC) between meridional atmosphere heat transport (AHT) and meridional ocean heat transport (OHT). Freshwater hosing in the North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) and thus reduces the northward OHT in the Atlantic significantly, leading to a cooling (warming) in the surface layer in the Northern (Southern) Hemisphere. This results in an enhanced Hadley cell and northward AHT. Meanwhile, the OHT in the Indo-Pacific is increased in response to the Hadley cell change, partially offsetting the reduced OHT in the Atlantic. Two compensations occur here: compensation between the AHT and the Atlantic OHT, and that between the Indo-Pacific OHT and the Atlantic OHT. The AHT change undercompensates the OHT change by about 60% in the extratropics, while the former overcompensates the latter by about 30% in the tropics due to the Indo-Pacific change. The BJC can be understood from the viewpoint of large-scale circulation change. However, the intrinsic mechanism of BJC is related to the climate feedback of the Earth system. The authors’ coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy balance, and local climate feedback determines the extent of BJC, consistent with previous theoretical results. Even during the transient period of climate change, the BJC is well established when the ocean heat storage is slowly varying and its change is much weaker than the net local heat flux change at the ocean surface. The BJC can be deduced from the local climate feedback. Under the freshwater forcing, the overcompensation in the tropics is mainly caused by the positive longwave feedback related to clouds, and the undercompensation in the extratropics is due to the negative longwave feedback related to surface temperature change. Different dominant feedbacks determine different BJC scenarios in different regions, which are in essence constrained by local energy balance.

Full access
Min Min, Lu Zhang, Peng Zhang, and Zhigang Yao

Abstract

The plane-parallel atmosphere as an underlying assumption in physics is appropriately used in the rigorous numerical simulation of the atmospheric radiative transfer model (RTM) with incident solar light. The solar irradiance is a constant with the plane-parallel assumption, which is attributed to the small difference in the distance between any point on Earth’s surface to the sun. However, at night, atmospheric RTMs use the moon as a unique incident light source in the sky. The Earth–moon distance is approximately 1/400 of the Earth–sun distance. Thus, the varying Earth–moon distance on Earth’s surface can influence the top of atmosphere (TOA) lunar irradiance for the plane-parallel atmosphere assumption. In this investigation, we observe that the maximum biases in Earth–moon distance and day/night band lunar irradiance at the TOA are ±1.7% and ±3.3%, respectively, with the plane-parallel assumption. According to our calculations, this bias effect on the Earth–moon distance and lunar irradiance shows a noticeable spatiotemporal variation on a global scale that can impact the computational accuracy of an RTM at night. In addition, we also developed a fast and portable correction algorithm for the Earth–moon distance within a maximum bias of 18 km or ±0.05%, because of the relatively low computational efficiency and the large storage space necessary for the standard ephemeris computational software. This novel correction algorithm can be easily used or integrated into the atmospheric RTM at night.

Restricted access
Lei Wang, Tandong Yao, Chenhao Chai, Lan Cuo, Fengge Su, Fan Zhang, Zhijun Yao, Yinsheng Zhang, Xiuping Li, Jia Qi, Zhidan Hu, Jingshi Liu, and Yuanwei Wang

Abstract

Monitoring changes in river runoff at the Third Pole (TP) is important because rivers in this region support millions of inhabitants in Asia and are very sensitive to climate change. Under the influence of climate change and intensified cryospheric melt, river runoff has changed markedly at the TP, with significant effects on the spatial and temporal water resource distribution that threaten water supply and food security for people living downstream. Despite some in situ observations and discharge estimates from state-of-the-art remote sensing technology, the total river runoff (TRR) for the TP has never been reliably quantified, and its response to climate change remains unclear. As part of the Chinese Academy of Sciences’ “Pan-Third Pole Environment Study for a Green Silk Road,” the TP-River project aims to construct a comprehensive runoff observation network at mountain outlets (where rivers leave the mountains and enter the plains) for 13 major rivers in the TP region, thereby enabling TRR to be accurately quantified. The project also integrates discharge estimates from remote sensing and cryosphere–hydrology modeling to investigate long-term changes in TRR and the relationship between the TRR variations and westerly/monsoon. Based on recent efforts, the project provides the first estimate (656 ± 23 billion m3) of annual TRR for the 13 TP rivers in 2018. The annual river runoff at the mountain outlets varies widely between the different TP rivers, ranging from 2 to 176 billion m3, with higher values mainly corresponding to rivers in the Indian monsoon domain, rather than in the westerly domain.

Open access
Dong-Peng Guo, Peng Zhao, Ran Wan, Ren-Tai Yao, and Ji-Min Hu

Abstract

This paper applied a commercial computational fluid dynamics code, STAR-CD, with the renormalization group k–ε turbulence model to simulate the flow and dispersion of contaminants released from a source on the windward side of a hill under different thermal stratifications. In the wake region, the influence of atmospheric stratification on the flow field is inconspicuous under neutral and unstable conditions because of the effect of mechanical disturbance. However, this influence becomes slightly conspicuous under stable conditions. When atmospheric stratification is stable, in the range of z/H < 1.0 (where z is height above the surface and H is height of the hill), the velocity deficits are smaller than those under neutral and unstable conditions. The maximum turbulence kinetic energy (TKE) appears in the wake regions, and the variation in TKE is significantly lower than that under neutral and unstable conditions. When atmospheric stratification is unstable, the vertical and horizontal spread of the plume is slightly greater than that under neutral and stable conditions and the maximum concentration is less than that under neutral conditions. When the Froude number is large (~11; Brunt–Väisälä frequency = 0.52), atmospheric stratification is slightly stable, the structure of flow around the hill is generally similar to that under neutral conditions, and the high-concentration regions are large on the windward side of the hill. Smaller high-concentration regions just appear on the windward side of the hill under unstable conditions. The pollutant concentrations in the wake region of the hill increase as a result of the effect of thermal stability, and the vertical spreading range of the plume along the downwind axis (x axis) is larger than that under neutral and stable conditions.

Free access
Liguo Su, Richard L. Collins, David A. Krueger, and Chiao-Yao She

Abstract

A statistical study is presented of the errors in sodium Doppler lidar measurements of wind and temperature in the mesosphere that arise from the statistics of the photon-counting process that is inherent in the technique. The authors use data from the Colorado State University (CSU) sodium Doppler wind-temperature lidar, acquired at a midlatitude site, to define the statistics of the lidar measurements in different seasons under both daytime and nighttime conditions. The CSU lidar measurements are scaled, based on a 35-cm-diameter receiver telescope, to the use of large-aperture telescopes (i.e., 1-, 1.8-, and 3.5-m diameters). The expected biases in vertical heat flux measurements at a resolution of 480 m and 150 s are determined and compared to Gardner and Yang’s reported geophysical values of 2.3 K m s−1. A cross-correlation coefficient of 2%–7% between the lidar wind and temperature estimates is found. It is also found that the biases vary from −4 × 10−3 K m s−1 for wintertime measurements at night with a 3.5-m telescope to −61 K m s−1 for summertime measurements at midday with a 1-m telescope. During winter, at night, the three telescope systems yield biases in their heat flux measurements that are less than 10% of the reported value of the heat flux; and during summer, at night, the 1.8- and 3.5-m systems yield biases in their heat flux measurements that are less than 10% of the geophysical value. While during winter at midday the 3.5-m system yields biases in their heat flux measurements that are less than 10% of the geophysical value, during summer at midday all of the systems yield flux biases that are greater than the geophysical value of the heat flux. The results are discussed in terms of current lidar measurements and proposed measurements at high-latitude sites.

Full access
Anthony D. Del Genio, Mao-Sung Yao, William Kovari, and Kenneth K-W. Lo

Abstract

An efficient new prognostic cloud water parameterization designed for use in global climate models is described. The scheme allows for life cycle effects in stratiform clouds and permits cloud optical properties to be determined interactively. The parameterization contains representations of all important microphysical processes, including autoconversion, accretion, Bergeron–Findeisen diffusional growth, and cloud/rain water evaporation. Small-scale dynamical processes, including detrainment of convective condensate, cloud-top entrainment instability, and stability-dependent cloud physical thickness variations, are also taken into account. Cloud optical thickness is calculated from the predicted liquid/ice water path and a variable droplet effective radius estimated by assuming constant droplet number concentration. Microphysical and radiative properties are assumed to be different for liquid and ice clouds, and for liquid clouds over land and ocean.

The parameterization is validated in several simulations using the Goddard Institute for Space Studies (GISS) general circulation model (GCM). Comparisons are made with a variety of datasets, including ERBE radiative fluxes and cloud forcing, ISCCP and surface-observed cloud properties, SSM/I liquid water path, and SAGE II thin cirrus cover. Validation is judged on the basis of the model's depiction of both the mean state; diurnal, seasonal, and interannual variability; and the temperature dependence of cloud properties. Relative to the diagnostic cloud scheme used in the previous GISS GCM, the prognostic parameterization strengthens the model's hydrologic cycle and general circulation, both directly and indirectly (via increased cumulus heating). Sea surface temperature (SST) perturbation experiments produce low climate sensitivity and slightly negative cloud feedback for globally uniform SST changes, but high sensitivity and positive cloud feedback when tropical Pacific SST gradients weaken with warming. Changes in the extent and optical thickness of tropical cumulus anvils appear to be the primary factor determining the sensitivity. This suggests that correct simulations of upward transport of convective condensate and of Walker circulation changes are of the highest priority for a realistic estimate of cloud feedback in actual greenhouse gas increase scenarios.

Full access
Jun Yang, Weitao Lyu, Ying Ma, Yijun Zhang, Qingyong Li, Wen Yao, and Tianshu Lu

Abstract

The macroscopic characteristics of clouds in the Tibetan Plateau are crucial to understanding the local climatic conditions and their impact on the global climate and water vapor cycle. In this study, the variations of cloud cover and cloud types are analyzed by using total-sky images of two consecutive years in Shigatse, Tibetan Plateau. The results show that the cloud cover in Shigatse presents a distinct seasonal difference that is characterized by low cloud cover in autumn and winter and high cloud cover in summer and spring. July is the month with the largest cloud coverage, and its average cloud cover exceeds 75%. The probability of clouds in the sky is the lowest in November, with an average cloud cover of less than 20%. The diurnal variations of cloud cover in different months also have considerable differences. Specifically, cloud cover is higher in the afternoon than that in the morning in most months, whereas the cloud cover throughout the day varies little from July to September. The dominant cloud types in different months are also not the same. The proportion of clear sky is large in autumn and winter. Stratiform cloud occupies the highest percentage in March, April, July, and August. The probability of emergence of cirrus is highest in May and June. The Shigatse region has clear rainy and dry seasons, and correlation analysis between precipitation and clouds shows that the largest cumulative precipitation, the highest cloud cover, and the highest proportion of stratiform clouds occur simultaneously in July.

Full access
R. W. Higgins, Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo

Abstract

The influence of the Great Plains low-level jet (LLJ) on summertime precipitation and moisture transport over the central United States is examined in observations and in assimilated datasets recently produced by the NCEP/NCAR and the NASA/DAO. Intercomparisons between the assimilated datasets and comparisons with station observations of precipitation, winds, and specific humidity are used to evaluate the limitations of the assimilated products for studying the diurnal cycle of rainfall and the Great Plains LLJ. The winds from the reanalyses are used to diagnose the impact of the LLJ on observed nocturnal precipitation and moisture transport over a multisummer (JJA 1985–89) period. The impact of the LLJ on the overall moisture budget of the central United States is also examined.

An inspection of the diurnal cycle of precipitation in gridded hourly station observations for 1963–93 reveals a well-defined nocturnal maximum over the Great Plains region during the spring and summer months consistent with earlier observational studies. During summer in excess of 25% more precipitation falls during the nighttime hours than during the daytime hours over a large portion of the Great Plains, with a commensurate decrease in the percentage amount of nocturnal precipitation along the Gulf Coast. Inspection of the nighttime precipitation by month shows that the maximum in precipitation along the Gulf Coast slowly shifts northward from the lower Mississippi Valley to the upper Midwest during the late spring and summer months and then back again during the fall.

Both reanalyses produce a Great Plains LLJ with a structure, diurnal cycle, and frequency of occurrence that compares favorably to hourly wind profiler data. Composites of observed nighttime rainfall during LLJ events show a fundamentally different pattern in the distribution of precipitation compared to nonjet events. Overall, LLJ events are associated with enhanced precipitation over the north central United States and Great Plains and decreased precipitation along the Gulf Coast and East Coast; nonjet events are associated with much weaker anomalies that are generally in the opposite sense. Inspection of the LLJ composites for each month shows a gradual shift of the region of enhanced precipitation from the northern tier of states toward the south and east in a manner consistent with the anomalous moisture transport. LLJ-related precipitation is found to be associated most closely with the strongest, least frequent LLJ events.

The moisture transport in the reanalyses compares favorably to radiosonde data, although significant regional differences exist, particularly along the Gulf Coast during summer. The diurnal cycle of the low-level moisture transport is well resolved in the reanalyses with the largest and most extensive anomalies being those associated with the nocturnal inland flow of the Great Plains LLJ. Examination of the impact of the LLJ on the nighttime moisture transport shows a coherent evolution from May to August with a gradual increase in the anomalous westerly transport over the southeastern United States, consistent with the evolution of the precipitation patterns. The impact of the LLJ on the overall moisture budget during summer is considerable with low-level inflow from the Gulf of Mexico increasing by more than 45%, on average, over nocturnal mean values.

Full access
Dong-Peng Guo, Peng Zhao, Ren-Tai Yao, Yun-Peng Li, Ji-Min Hu, and Dan Fan

Abstract

In this paper, the kε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel experiment results. When atmosphere stratification is stable, the separation zones on the sides and at the top of a building are relatively smaller than those under neutral conditions, and the effect of the building in the horizontal direction is stronger than that in the vertical direction. The variation in turbulent kinetic energy under stable conditions is significantly lower than that under neutral conditions. The effect of atmospheric stratification on the turbulent kinetic energy becomes gradually more prominent with increased distance. When atmosphere conditions are stable, the vertical distribution of the plume is smaller than that of neutral conditions, but the lateral spread and near-ground concentration are slightly larger than those of neutral conditions, mainly because stable atmospheric stratification suppresses the vertical motions of airflow and increases the horizontal spread of the plume.

Free access