Search Results

You are looking at 81 - 84 of 84 items for

  • Author or Editor: Paul Dirmeyer x
  • Refine by Access: All Content x
Clear All Modify Search
Annarita Mariotti
,
Cory Baggett
,
Elizabeth A. Barnes
,
Emily Becker
,
Amy Butler
,
Dan C. Collins
,
Paul A. Dirmeyer
,
Laura Ferranti
,
Nathaniel C. Johnson
,
Jeanine Jones
,
Ben P. Kirtman
,
Andrea L. Lang
,
Andrea Molod
,
Matthew Newman
,
Andrew W. Robertson
,
Siegfried Schubert
,
Duane E. Waliser
, and
John Albers

Abstract

There is high demand and a growing expectation for predictions of environmental conditions that go beyond 0–14-day weather forecasts with outlooks extending to one or more seasons and beyond. This is driven by the needs of the energy, water management, and agriculture sectors, to name a few. There is an increasing realization that, unlike weather forecasts, prediction skill on longer time scales can leverage specific climate phenomena or conditions for a predictable signal above the weather noise. Currently, it is understood that these conditions are intermittent in time and have spatially heterogeneous impacts on skill, hence providing strategic windows of opportunity for skillful forecasts. Research points to such windows of opportunity, including El Niño or La Niña events, active periods of the Madden–Julian oscillation, disruptions of the stratospheric polar vortex, when certain large-scale atmospheric regimes are in place, or when persistent anomalies occur in the ocean or land surface. Gains could be obtained by increasingly developing prediction tools and metrics that strategically target these specific windows of opportunity. Across the globe, reevaluating forecasts in this manner could find value in forecasts previously discarded as not skillful. Users’ expectations for prediction skill could be more adequately met, as they are better aware of when and where to expect skill and if the prediction is actionable. Given that there is still untapped potential, in terms of process understanding and prediction methodologies, it is safe to expect that in the future forecast opportunities will expand. Process research and the development of innovative methodologies will aid such progress.

Free access
Annarita Mariotti
,
Cory Baggett
,
Elizabeth A. Barnes
,
Emily Becker
,
Amy Butler
,
Dan C. Collins
,
Paul A. Dirmeyer
,
Laura Ferranti
,
Nathaniel C. Johnson
,
Jeanine Jones
,
Ben P. Kirtman
,
Andrea L. Lang
,
Andrea Molod
,
Matthew Newman
,
Andrew W. Robertson
,
Siegfried Schubert
,
Duane E. Waliser
, and
John Albers
Full access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager
Full access
William J. Merryfield
,
Johanna Baehr
,
Lauriane Batté
,
Emily J. Becker
,
Amy H. Butler
,
Caio A. S. Coelho
,
Gokhan Danabasoglu
,
Paul A. Dirmeyer
,
Francisco J. Doblas-Reyes
,
Daniela I. V. Domeisen
,
Laura Ferranti
,
Tatiana Ilynia
,
Arun Kumar
,
Wolfgang A. Müller
,
Michel Rixen
,
Andrew W. Robertson
,
Doug M. Smith
,
Yuhei Takaya
,
Matthias Tuma
,
Frederic Vitart
,
Christopher J. White
,
Mariano S. Alvarez
,
Constantin Ardilouze
,
Hannah Attard
,
Cory Baggett
,
Magdalena A. Balmaseda
,
Asmerom F. Beraki
,
Partha S. Bhattacharjee
,
Roberto Bilbao
,
Felipe M. de Andrade
,
Michael J. DeFlorio
,
Leandro B. Díaz
,
Muhammad Azhar Ehsan
,
Georgios Fragkoulidis
,
Alex O. Gonzalez
,
Sam Grainger
,
Benjamin W. Green
,
Momme C. Hell
,
Johnna M. Infanti
,
Katharina Isensee
,
Takahito Kataoka
,
Ben P. Kirtman
,
Nicholas P. Klingaman
,
June-Yi Lee
,
Kirsten Mayer
,
Roseanna McKay
,
Jennifer V. Mecking
,
Douglas E. Miller
,
Nele Neddermann
,
Ching Ho Justin Ng
,
Albert Ossó
,
Klaus Pankatz
,
Simon Peatman
,
Kathy Pegion
,
Judith Perlwitz
,
G. Cristina Recalde-Coronel
,
Annika Reintges
,
Christoph Renkl
,
Balakrishnan Solaraju-Murali
,
Aaron Spring
,
Cristiana Stan
,
Y. Qiang Sun
,
Carly R. Tozer
,
Nicolas Vigaud
,
Steven Woolnough
, and
Stephen Yeager

Abstract

Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere–ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.

Free access