Search Results

You are looking at 81 - 90 of 136 items for

  • Author or Editor: Yao Yao x
  • Refine by Access: All Content x
Clear All Modify Search
Jun Yang, Weitao Lyu, Ying Ma, Yijun Zhang, Qingyong Li, Wen Yao, and Tianshu Lu

Abstract

The macroscopic characteristics of clouds in the Tibetan Plateau are crucial to understanding the local climatic conditions and their impact on the global climate and water vapor cycle. In this study, the variations of cloud cover and cloud types are analyzed by using total-sky images of two consecutive years in Shigatse, Tibetan Plateau. The results show that the cloud cover in Shigatse presents a distinct seasonal difference that is characterized by low cloud cover in autumn and winter and high cloud cover in summer and spring. July is the month with the largest cloud coverage, and its average cloud cover exceeds 75%. The probability of clouds in the sky is the lowest in November, with an average cloud cover of less than 20%. The diurnal variations of cloud cover in different months also have considerable differences. Specifically, cloud cover is higher in the afternoon than that in the morning in most months, whereas the cloud cover throughout the day varies little from July to September. The dominant cloud types in different months are also not the same. The proportion of clear sky is large in autumn and winter. Stratiform cloud occupies the highest percentage in March, April, July, and August. The probability of emergence of cirrus is highest in May and June. The Shigatse region has clear rainy and dry seasons, and correlation analysis between precipitation and clouds shows that the largest cumulative precipitation, the highest cloud cover, and the highest proportion of stratiform clouds occur simultaneously in July.

Full access
Lei Wang, Zhi-Jun Yao, Li-Guang Jiang, Rui Wang, Shan-Shan Wu, and Zhao-Fei Liu

Abstract

The spatiotemporal changes in 21 indices of extreme temperature and precipitation for the Mongolian Plateau from 1951 to 2012 were investigated on the basis of daily temperature and precipitation data from 70 meteorological stations. Changes in catastrophic events, such as droughts, floods, and snowstorms, were also investigated for the same period. The correlations between catastrophic events and the extreme indices were examined. The results show that the Mongolian Plateau experienced an asymmetric warming trend. Both the cold extremes and warm extremes showed greater warming at night than in the daytime. The spatial changes in significant trends showed a good homogeneity and consistency in Inner Mongolia. Changes in the precipitation extremes were not as obvious as those in the temperature extremes. The spatial distributions in changes of precipitation extremes were complex. A decreasing trend was shown for total precipitation from west to east as based on the spatial distribution of decadal trends. Drought was the most serious extreme disaster, and prolonged drought for longer than 3 yr occurred about every 7–11 yr. An increasing trend in the disaster area was apparent for flood events from 1951 to 2012. A decreasing trend was observed for the maximum depth of snowfall from 1951 to 2012, with a decreased average maximum depth of 10 mm from the 1990s.

Full access
Jing Gao, V. Masson-Delmotte, T. Yao, L. Tian, C. Risi, and G. Hoffmann

Abstract

Measurements of precipitation isotopic composition have been conducted on a daily basis for 1 yr at Bomi, in the southeast Tibetan Plateau, an area affected by the interaction of the southwest monsoon, the westerlies, and Tibetan high pressure systems, as well as at Lhasa, situated west of Bomi. The measured isotope signals are analyzed both on an event basis and on a seasonal scale using available meteorological information and airmass trajectories. The processes driving daily and seasonal isotopic variability are investigated using multidecadal climate simulations forced by twentieth-century boundary conditions and conducted with two different isotopic atmospheric general circulation models [the isotopic version of the Laboratoire de Météorologie Dynamique GCM (LMDZiso) and the ECHAM4iso model]. Both models use specific nudging techniques to mimic observed atmospheric circulation fields. The models simulate a wet and cold bias on the Tibetan Plateau together with a dry bias in its southern part. A zoomed LMDZ simulation conducted with ~50-km local spatial resolution dramatically improves the simulation of isotopic compositions of precipitation on the Tibetan Plateau. Simulated water isotope fields are compared with new data and with previous observations, and regional differences in moisture origins are analyzed using back-trajectories. Here, the focus is on relationships between the water isotopes and climate variables on an event and seasonal scale and in terms of spatial and altitudinal isotopic gradients. Enhancing the spatial resolution is crucial for improving the simulation of the precipitation isotopic composition.

Full access
Jeng-Lin Tsai, Ben-Jei Tsuang, Po-Sheng Lu, Ming-Hwi Yao, and Yuan Shen

Abstract

Many meteorological and air-quality models require land characteristics as inputs. A field experiment was conducted to study the surface energy budget of a rice paddy in Taiwan. During the day, the energy balance ratio measured by an eddy covariance (EC) system was found to be 95% after considering the photosynthetic and local advected heat fluxes. The observations by the EC system suggest that the Bowen ratio was about 0.18 during the daytime. The EC system also measured the daytime absorbed carbon dioxide flux. The equivalent photosynthetic energy flux was about 1% of the net solar radiation. A reference table describing the land characteristics of rice paddies for use in meteorological and air-quality models is listed that shows that the albedo and the Bowen ratio measured over rice paddies were lower than those listed in many state-of-the-art models. This study proposes simulating latent heat flux by assigning proper values for canopy resistance rather than by assigning constant values for Bowen ratio or surface moisture availability. The diurnal pattern of the canopy resistance of the rice paddy was found to be “U” shaped. Daytime canopy resistance was observed to be 87 s m−1, and a high canopy resistance (∼900 s m−1) should be assigned during nighttime periods.

Full access
Dan-Qing Huang, Jian Zhu, Yao-Cun Zhang, and An-Ning Huang

Abstract

To investigate the concurrent impacts of the East Asian polar front jet (EAPJ) and subtropical jet (EASJ) on the summer rainfall over eastern China, positive (strengthened EAPJ with weakened EASJ) and negative (weakened EAPJ with strengthened EASJ) configurations are identified. In the positive configuration, rainfall decreases in the northern part of eastern China and increases in the southern part, vice versa in the negative configuration. The possible mechanisms maintaining the two jet configurations are further proposed from the perspectives of sea surface temperature (SST) and synoptic-scale transient eddy activities (STEA). In the positive configuration, meridional distributed cold–warm SST anomalies over the eastern North Pacific may induce regional circulation and meridional temperature gradient anomalies, which can strengthen the EAPJ and weaken the EASJ. The central Pacific La Niña–like SST anomalies are related with the Arctic vortexlike anomalies in the stratosphere, which may strengthen the EAPJ. Furthermore, the divergence of Eliassen–Palm vectors and the conversion from eddy kinetic energy to mean kinetic energy over the active region of the EAPJ may strengthen the EAPJ, vice versa for the weakened EASJ. In the negative configuration, associated with the warm SST anomalies over the western North Pacific, the enhanced convective activities may lead to a strengthened EASJ via meridional teleconnection. The teleconnection may be intensified by the strengthened easterly vertical shear. Additionally, eastern Pacific La Niña–like SST anomalies may intensify the Walker circulation, which may strengthen the EASJ via the Hadley circulation. The STEA-related anomalies are almost opposite those in the positive configuration, especially for the weakened EAPJ.

Full access
R. W. Higgins, Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo

Abstract

The influence of the Great Plains low-level jet (LLJ) on summertime precipitation and moisture transport over the central United States is examined in observations and in assimilated datasets recently produced by the NCEP/NCAR and the NASA/DAO. Intercomparisons between the assimilated datasets and comparisons with station observations of precipitation, winds, and specific humidity are used to evaluate the limitations of the assimilated products for studying the diurnal cycle of rainfall and the Great Plains LLJ. The winds from the reanalyses are used to diagnose the impact of the LLJ on observed nocturnal precipitation and moisture transport over a multisummer (JJA 1985–89) period. The impact of the LLJ on the overall moisture budget of the central United States is also examined.

An inspection of the diurnal cycle of precipitation in gridded hourly station observations for 1963–93 reveals a well-defined nocturnal maximum over the Great Plains region during the spring and summer months consistent with earlier observational studies. During summer in excess of 25% more precipitation falls during the nighttime hours than during the daytime hours over a large portion of the Great Plains, with a commensurate decrease in the percentage amount of nocturnal precipitation along the Gulf Coast. Inspection of the nighttime precipitation by month shows that the maximum in precipitation along the Gulf Coast slowly shifts northward from the lower Mississippi Valley to the upper Midwest during the late spring and summer months and then back again during the fall.

Both reanalyses produce a Great Plains LLJ with a structure, diurnal cycle, and frequency of occurrence that compares favorably to hourly wind profiler data. Composites of observed nighttime rainfall during LLJ events show a fundamentally different pattern in the distribution of precipitation compared to nonjet events. Overall, LLJ events are associated with enhanced precipitation over the north central United States and Great Plains and decreased precipitation along the Gulf Coast and East Coast; nonjet events are associated with much weaker anomalies that are generally in the opposite sense. Inspection of the LLJ composites for each month shows a gradual shift of the region of enhanced precipitation from the northern tier of states toward the south and east in a manner consistent with the anomalous moisture transport. LLJ-related precipitation is found to be associated most closely with the strongest, least frequent LLJ events.

The moisture transport in the reanalyses compares favorably to radiosonde data, although significant regional differences exist, particularly along the Gulf Coast during summer. The diurnal cycle of the low-level moisture transport is well resolved in the reanalyses with the largest and most extensive anomalies being those associated with the nocturnal inland flow of the Great Plains LLJ. Examination of the impact of the LLJ on the nighttime moisture transport shows a coherent evolution from May to August with a gradual increase in the anomalous westerly transport over the southeastern United States, consistent with the evolution of the precipitation patterns. The impact of the LLJ on the overall moisture budget during summer is considerable with low-level inflow from the Gulf of Mexico increasing by more than 45%, on average, over nocturnal mean values.

Full access
Dong-Peng Guo, Peng Zhao, Ren-Tai Yao, Yun-Peng Li, Ji-Min Hu, and Dan Fan

Abstract

In this paper, the kε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel experiment results. When atmosphere stratification is stable, the separation zones on the sides and at the top of a building are relatively smaller than those under neutral conditions, and the effect of the building in the horizontal direction is stronger than that in the vertical direction. The variation in turbulent kinetic energy under stable conditions is significantly lower than that under neutral conditions. The effect of atmospheric stratification on the turbulent kinetic energy becomes gradually more prominent with increased distance. When atmosphere conditions are stable, the vertical distribution of the plume is smaller than that of neutral conditions, but the lateral spread and near-ground concentration are slightly larger than those of neutral conditions, mainly because stable atmospheric stratification suppresses the vertical motions of airflow and increases the horizontal spread of the plume.

Free access
George Tselioudis, Anthony D. DelGenio, William Kovari Jr., and Mao-Sung Yao

Abstract

A current-climate simulation of the Goddard Institute for Space Studies (GISS) GCM, which includes interactive cloud optical properties that depend on the predicted cloud water content, is analyzed to document the variations of low cloud optical thickness with temperature in the model atmosphere. It is found that low cloud optical thickness decreases with temperature in the warm subtropical and tropical latitudes and increases with temperature in the cold midlatitude regions. This behavior is in agreement with the results of two observational studies that analyzed satellite data from the International Satellite Cloud Climatology Project and Special Sensor Microwave/Imager datasets. The increase of low cloud optical thickness with temperature in the midlatitudes is due to vertical extent and cloud water increases, whereas the decrease with temperature in the warm latitudes is due to decreases in cloud water content and happens despite increases in cloud vertical extent. The cloud processes that produce the cloud property changes in the model also vary with latitude. In the midlatitude regions relative-humidity-induced increases of cloud vertical extent with temperature dominate, whereas in the Tropics increases in cloud-top entrainment and precipitation with temperature produce decreases of cloud water content, whose effect on optical thickness outweighs the effect of entrainment-induced increases of cloud vertical extent with temperature. Doubled-CO2 simulations with the GISS GCM suggest that even though low cloud optical thickness changes have little effect on the global climate sensitivity of the model, they redistribute the temperature change and reduce the high-latitude amplification of the greenhouse warming. It is also found that the current-climate variations of low cloud optical thickness with temperature reproduce qualitatively but overestimate quantitatively the changes in optical thickness with climate warming.

Full access
Anthony D. Del Genio, Yonghua Chen, Daehyun Kim, and Mao-Sung Yao
Full access
Andrea I. Flossmann, Michael Manton, Ali Abshaev, Roelof Bruintjes, Masataka Murakami, Thara Prabhakaran, and Zhanyu Yao

Abstract

This paper provides a summary of the assessment report of the World Meteorological Organization (WMO) Expert Team on Weather Modification that discusses recent progress on precipitation enhancement research. The progress has been underpinned by advances in our understanding of cloud processes and interactions between clouds and their environment, which, in turn, have been enabled by substantial developments in technical capabilities to both observe and simulate clouds from the microphysical to the mesoscale. We focus on the two cloud types most commonly seeded in the past: winter orographic cloud systems and convective cloud systems. A key issue for cloud seeding is the extension from cloud-scale research to water catchment–scale impacts on precipitation on the ground. Consequently, the requirements for the design, implementation, and evaluation of a catchment-scale precipitation enhancement campaign are discussed. The paper concludes by indicating the most important gaps in our knowledge. Some recommendations regarding the most urgent research topics are given to stimulate further research.

Open access