Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: A. Arking x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
J. Otterman, M-D. Chou, and A. Arking

Abstract

The albedo of a forest with snow on the ground is much less than that of snow-covered low vegetation such as tundra. As a result, simulation of the Northern Hemisphere climate, when fully forested south of a suitably chosen taiga/tundra boundary (ecocline), produces a hemispheric surface air temperature 1.9 K higher than that of an earth devoid of trees. Using variations of the solar constant to force climate changes in the GLAS Multi-Layer Energy Balance Model, the role of snow-albedo feedback in increasing the climate sensitivity to external perturbations is reexamined. The effect of snow-albedo feedback is found to be significantly reduced when a low albedo is used for snow over taiga, south of the fixed latitude of the ecocline. If the ecocline shifts to maintain equilibrium with the new climate—which is presumed to occur in a prolonged perturbation when time is sufficient for trees to grow or die and fall—the feedback is stronger than for a fixed ecocline, especially at high latitudes. However, this snow/vegetation-albedo feedback is still essentially weaker than the snow-albedo feedback in the forest-free case.

The loss of forest to agriculture and other land-use would put the present climate further away from that associated with the fully forested earth south of the ecocline and closer to the forest-free case. Thus, the decrease in nontropical forest cover since prehistoric times has probably affected the climate by reducing the temperatures and by increasing the sensitivity to perturbations, with both effects more pronounced at high latitudes.

Full access
W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, and E. Smith

Abstract

The International Satellite Cloud Climatology Project (ISCCP) will provide a uniform global climatology of satellite-measured radiances and derive an experimental climatology of cloud radiative properties from these radiances. A pilot study to intercompare cloud analysis algorithms was initiated in 1981 to define a state-of-the-art algorithm for ISCCP. This study compared the results of applying six different algorithms to the same satellite radiance data. The results show that the performance of all current algorithms depends on how accurately the clear sky radiances are specified; much improvement in results is possible with better methods for obtaining these clear-sky radiances. A major difference between the algorithms is caused by their sensitivity to changes in the cloud size distribution and optical properties: all methods, which work well for some cloud types or climate regions, do poorly for other situations. Therefore, the ISCCP algorithm is composed of a series of steps, each of which is designed to detect some of the clouds present in the scene. This progressive analysis is used to retrieve an estimate of the clear sky radiances corresponding to each satellite image. Application of a bispectral threshold is then used as the last step to determine the cloud fraction. Cloudy radiances are interpreted in terms of a simplified model of cloud radiative effects to provide some measure of cloud radiative properties. Application of this experimental algorithm to produce a cloud climatology and field observation programs to validate the results will stimulate further research on cloud analysis techniques as part of ISCCP.

Full access