Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: A. H. Gordon x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
Abstract
The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multiagency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NO x = NO + NO2) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes; the role of lake breezes; contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management; and evaluation of photochemical grid models. The observing strategy included GeoTASO on board the NASA UC-12 aircraft capturing NO2 and formaldehyde columns, an in situ profiling aircraft, two ground-based coastal enhanced monitoring locations, continuous NO2 columns from coastal Pandora instruments, and an instrumented research vessel. Local photochemical ozone production was observed on 2 June, 9–12 June, and 14–16 June, providing insights on the processes relevant to state and federal air quality management. The LMOS 2017 aircraft mapped significant spatial and temporal variation of NO2 emissions as well as polluted layers with rapid ozone formation occurring in a shallow layer near the Lake Michigan surface. Meteorological characteristics of the lake breeze were observed in detail and measurements of ozone, NOx, nitric acid, hydrogen peroxide, VOC, oxygenated VOC (OVOC), and fine particulate matter (PM2.5) composition were conducted. This article summarizes the study design, directs readers to the campaign data repository, and presents a summary of findings.
Abstract
The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multiagency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NO x = NO + NO2) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes; the role of lake breezes; contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management; and evaluation of photochemical grid models. The observing strategy included GeoTASO on board the NASA UC-12 aircraft capturing NO2 and formaldehyde columns, an in situ profiling aircraft, two ground-based coastal enhanced monitoring locations, continuous NO2 columns from coastal Pandora instruments, and an instrumented research vessel. Local photochemical ozone production was observed on 2 June, 9–12 June, and 14–16 June, providing insights on the processes relevant to state and federal air quality management. The LMOS 2017 aircraft mapped significant spatial and temporal variation of NO2 emissions as well as polluted layers with rapid ozone formation occurring in a shallow layer near the Lake Michigan surface. Meteorological characteristics of the lake breeze were observed in detail and measurements of ozone, NOx, nitric acid, hydrogen peroxide, VOC, oxygenated VOC (OVOC), and fine particulate matter (PM2.5) composition were conducted. This article summarizes the study design, directs readers to the campaign data repository, and presents a summary of findings.
The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users.
The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a “flux coupler” that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1 % per year.
In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several projections of the climate of the twenty-first century.
The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface temperature in the central and eastern tropical Pacific is also more realistic in simulations with the updated model.
Scientific challenges to be addressed with future versions of the CCSM include realistic simulation of the whole atmosphere, including the middle and upper atmosphere, as well as the troposphere; simulation of changes in the chemical composition of the atmosphere through the incorporation of an integrated chemistry model; inclusion of global, prognostic biogeochemical components for land, ocean, and atmosphere; simulations of past climates, including times of extensive continental glaciation as well as times with little or no ice; studies of natural climate variability on seasonal-to-centennial timescales; and investigations of anthropogenic climate change. In order to make such studies possible, work is under way to improve all components of the model. Plans call for a new version of the CCSM to be released in 2002. Planned studies with the CCSM will require much more computer power than is currently available.
The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users.
The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a “flux coupler” that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1 % per year.
In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several projections of the climate of the twenty-first century.
The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface temperature in the central and eastern tropical Pacific is also more realistic in simulations with the updated model.
Scientific challenges to be addressed with future versions of the CCSM include realistic simulation of the whole atmosphere, including the middle and upper atmosphere, as well as the troposphere; simulation of changes in the chemical composition of the atmosphere through the incorporation of an integrated chemistry model; inclusion of global, prognostic biogeochemical components for land, ocean, and atmosphere; simulations of past climates, including times of extensive continental glaciation as well as times with little or no ice; studies of natural climate variability on seasonal-to-centennial timescales; and investigations of anthropogenic climate change. In order to make such studies possible, work is under way to improve all components of the model. Plans call for a new version of the CCSM to be released in 2002. Planned studies with the CCSM will require much more computer power than is currently available.
Abstract
The polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with fewer in situ observations, and with numerous local physical processes that are less well represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere–sea ice–ocean models, even for short-term prediction; and insight into polar–lower-latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting communites will work together with stakeholders in a period of intensive observing, modeling, prediction, verification, user engagement, and educational activities.
Abstract
The polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with fewer in situ observations, and with numerous local physical processes that are less well represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere–sea ice–ocean models, even for short-term prediction; and insight into polar–lower-latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting communites will work together with stakeholders in a period of intensive observing, modeling, prediction, verification, user engagement, and educational activities.
Abstract
In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.
Abstract
In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.