Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: A. J. Pitman x
  • Earth Interactions x
  • Refine by Access: All Content x
Clear All Modify Search
G. T. Narisma and A. J. Pitman

Abstract

The potential role of the impacts of land-cover changes (LCCs) in the Australian climate is investigated within the context of increasing CO2 concentrations and temperature. Specifically, it is explored if possible scenarios for LCC can moderate or amplify CO2-induced changes in climate over Australia. The January climate of Australia is simulated under three different land-cover-change scenarios using a high-resolution regional climate model. The land-cover-change scenarios include a steady-state land cover that is equivalent to current land cover, a low-reforestation scenario that recovers approximately 25% of the trees replaced by grasslands within the last 200 yr, and a high-reforestation scenario that recovers at least 75% of the deforested regions. The model was driven by boundary conditions taken from transitory climate simulations from a general circulation model that included two climate scenarios based on two projected scenarios of CO2 concentration increase. The results show that reforestation has the potential to reduce the projected increase in Australian temperatures in 2050 and 2100 by as much as 40% and 20%, respectively. This cooling effect, however, is highly localized and occurs only in regions of reforestation. The results therefore hint that the potential of reforestation to moderate the impact of global warming may be significantly limited by the spatial scale of reforestation. In terms of deforestation, results show that any future land clearing can exacerbate the projected warming in certain regions of Australia. Carbon-related variables are also analyzed and results show that changes in net CO2 flux may be influenced more by soil respiration than by photosynthesis. The results herein encourage studies on the inclusion of land-cover-change scenarios in future climate change projection simulations of the Australian climate.

Full access
A. J. Pitman and S. E. Perkins

Abstract

Daily data from climate models submitted to the Fourth Assessment of the Intergovernmental Panel on Climate Change are compared with daily data from observations over Australia by measuring the overlap of the probability density functions (PDFs). The capacity of these models to simulate maximum temperature, minimum temperature, and precipitation is assessed. The resulting skill score is then used to exclude models with relatively poor skill region by region over Australia. The remaining sample of coupled climate models is then used to determine the seasonal changes in these three variables under a high- (A2) and low- (B1) emission scenario for 2050 and 2100. The authors demonstrate that some projected phenomena, such as the projected drying over southwest Western Australia, are robust and not caused by the inclusion of some weak models in earlier assessments. Some other results, such as the projected change in the monsoon, are more consistent among the good climate models. Consistent with earlier work, a consistent pattern of mean warming is identified in the projections. The amount of warming in the 99.7th percentile is not dramatically higher than the warming in the mean. However, while the mean warming is generally least in the south, the amount of warming in the 99.7th percentile is substantially higher along the southern coast of Australia. This is due to a coupling of the temperature response with reduced rainfall, which causes drying and allows extreme maximum temperatures to increase dramatically. The authors show that, in general, the amount of rainfall is projected to change relatively little, but the frequency of rainfall decreases and the intensity of rainfall at the upper tail of the distribution increases. However, the scale of the increase in extreme rainfall is not large on the time scales analyzed here. The range in projected temperature changes among those climate models with skill in simulating the observations is at least twice as large for the 99.7th/0.3rd percentiles as for the mean. For rainfall, the range among the good models is of order 10 times greater in the 99.7th percentile than in the mean. Since the impact of changes in extremes is increasingly recognized as societally important, this result strongly limits the use of climate model data to explore sectors that are vulnerable to extremes. This suggests an evaluation strategy that focuses on model capacity to simulate whole PDFs since capacity to simulate the mean is a necessary but insufficient criterion for determining a model’s value for future projection.

Full access
A L. Hirsch, A. J. Pitman, J. Kala, R. Lorenz, and M. G. Donat

Abstract

The role of land–atmosphere coupling in modulating the impact of land-use change (LUC) on regional climate extremes remains uncertain. Using the Weather and Research Forecasting Model, this study combines the Global Land–Atmosphere Coupling Experiment with regional LUC to assess the combined impact of land–atmosphere coupling and LUC on simulated temperature extremes. The experiment is applied to an ensemble of planetary boundary layer (PBL) and cumulus parameterizations to determine the sensitivity of the results to model physics. Results show a consistent weakening in the soil moisture–maximum temperature coupling strength with LUC irrespective of the model physics. In contrast, temperature extremes show an asymmetric response to LUC dependent on the choice of PBL scheme, which is linked to differences in the parameterization of vertical transport. This influences convective precipitation, contributing a positive feedback on soil moisture and consequently on the partitioning of the surface turbulent fluxes. The results suggest that the impact of LUC on temperature extremes depends on the land–atmosphere coupling that in turn depends on the choice of PBL. Indeed, the sign of the temperature change in hot extremes resulting from LUC can be changed simply by altering the choice of PBL. The authors also note concerns over the metrics used to measure coupling strength that reflect changes in variance but may not respond to LUC-type perturbations.

Full access