Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: A. P. Trishchenko x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Shusen Wang
Yan Yang
Alexander P. Trishchenko
Alan G. Barr
T. A. Black
, and
Harry McCaughey


Humidity of air is a key environmental variable in controlling the stomatal conductance (g) of plant leaves. The stomatal conductance–humidity relationships employed in the Ball–Woodrow–Berry (BWB) model and the Leuning model have been widely used in the last decade. Results of independent evaluations of the two models vary greatly. In this study, the authors develop a new diagnostic parameter that is based on canopy water vapor and CO2 fluxes to assess the response of canopy g to humidity. Using eddy-covariance flux measurements at three boreal forest sites in Canada, they critically examine the performance of the BWB and the Leuning models. The results show that the BWB model, which employs a linear relationship between g and relative humidity (hs ), leads to large underestimates of g when the air is wet. The Leuning model, which employs a nonlinear function of water vapor pressure deficit (Ds ), reduced this bias, but it still could not adequately capture the significant increase of g under the wet conditions. New models are proposed to improve the prediction of canopy g to humidity. The best performance was obtained by the model that employs a power function of Ds , followed by the model that employs a power function of relative humidity deficit (1 − hs ). The results also indicate that models based on water vapor pressure deficit generally performed better than those based on relative humidity. This is consistent with the hypothesis that the stomatal aperture responds to leaf water loss because water vapor pressure deficit rather than relative humidity directly affects the transpiration rate of canopy leaves.

Full access