Search Results
You are looking at 1 - 10 of 26 items for :
- Author or Editor: Adam A. Scaife x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
This study identifies that cold surges over the South China Sea (SCS) have experienced a significant change on decadal time scales. The results indicate that cold surges occur more frequently after the early 2000s than before and are at least partially explained by changes in circulation patterns. Both the negative phase of the Scandinavian (SCA) pattern and the cold phase of the interdecadal Pacific oscillation (IPO) can induce increased cold surges and the IPO effect dominates in recent decades. When the IPO shifts to its cold phase, low-level cyclones are induced over the western North Pacific through a Gill response. The northeasterlies along the northwest flank of the cyclones further lead to intensified cold surges over the SCS. The above processes can be reproduced in coupled models, suggesting a robust connection between the IPO and cold surges. The present findings highlight the role of tropical forcing and bring insight into understanding of the future climate variability and change over East Asia during boreal winter.
Abstract
This study identifies that cold surges over the South China Sea (SCS) have experienced a significant change on decadal time scales. The results indicate that cold surges occur more frequently after the early 2000s than before and are at least partially explained by changes in circulation patterns. Both the negative phase of the Scandinavian (SCA) pattern and the cold phase of the interdecadal Pacific oscillation (IPO) can induce increased cold surges and the IPO effect dominates in recent decades. When the IPO shifts to its cold phase, low-level cyclones are induced over the western North Pacific through a Gill response. The northeasterlies along the northwest flank of the cyclones further lead to intensified cold surges over the SCS. The above processes can be reproduced in coupled models, suggesting a robust connection between the IPO and cold surges. The present findings highlight the role of tropical forcing and bring insight into understanding of the future climate variability and change over East Asia during boreal winter.
Abstract
The prediction skill and errors in surface temperature anomalies in initialized decadal hindcasts from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are assessed using six ocean–atmosphere coupled models initialized every year from 1961 to 2008. The initialized hindcasts show relatively high prediction skill over the regions where external forcing dominates, indicating that a large portion of the prediction skill is due to the long-term trend. After removing the linear trend, high prediction skill is shown near the centers of action of the dominant decadal climate oscillations, such as the Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO). Low prediction skill appears over the tropical and eastern North Pacific Ocean where the predicted anomaly patterns associated with the PDO are systematically different in model and observations. By statistically correcting those systematic errors using a stepwise pattern projection method (SPPM) based on the data in an independent training period, the prediction skill of sea surface temperature (SST) is greatly enhanced over the North Pacific Ocean. The SST prediction skill over the North Pacific Ocean after the SPPM error correction is as high as that over the North Atlantic Ocean. In addition, the prediction skill in a single model after correction exceeds the skill of the multimodel ensemble (MME) mean before correction, implying that the MME method is not as effective in addressing systematic errors as the SPPM correction.
Abstract
The prediction skill and errors in surface temperature anomalies in initialized decadal hindcasts from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are assessed using six ocean–atmosphere coupled models initialized every year from 1961 to 2008. The initialized hindcasts show relatively high prediction skill over the regions where external forcing dominates, indicating that a large portion of the prediction skill is due to the long-term trend. After removing the linear trend, high prediction skill is shown near the centers of action of the dominant decadal climate oscillations, such as the Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO). Low prediction skill appears over the tropical and eastern North Pacific Ocean where the predicted anomaly patterns associated with the PDO are systematically different in model and observations. By statistically correcting those systematic errors using a stepwise pattern projection method (SPPM) based on the data in an independent training period, the prediction skill of sea surface temperature (SST) is greatly enhanced over the North Pacific Ocean. The SST prediction skill over the North Pacific Ocean after the SPPM error correction is as high as that over the North Atlantic Ocean. In addition, the prediction skill in a single model after correction exceeds the skill of the multimodel ensemble (MME) mean before correction, implying that the MME method is not as effective in addressing systematic errors as the SPPM correction.
Abstract
Recent periods of extreme weather in Europe, such as the cold winter of 2009/10, have caused widespread impacts and were remarkable because of their persistence. It is therefore of great interest to improve the ability to forecast such events. Weather forecasts at midlatitudes generally show low skill beyond 5–10 days, but long-range forecast skill may increase during extended tropospheric blocking episodes or perturbations of the stratospheric polar vortex, which can affect midlatitude weather for several weeks at a time. Here a simple, linear approach is used to identify previously undocumented persistence in northern European summer and winter temperature anomalies in climate model simulations, corroborated by observations and reanalysis data. For instance, temperature anomalies of at least one standard deviation above or below climatology in March were found to be about 20%–120% more likely than normal if the preceding February was anomalous by 0.5–1.5 standard deviations (with the same sign). The corresponding range for April (i.e., persistence over two months) is between 20% and 80%. The persistence is observed irrespective of the data source or driving mechanisms, and the temperature itself is a more skillful predictor of the temperatures one month ahead than the stratospheric polar vortex or the NAO and even than both factors together. The results suggest potential to conditionally improve the skill of long-range forecasts and enhance recent advancements in dynamical seasonal prediction.
Abstract
Recent periods of extreme weather in Europe, such as the cold winter of 2009/10, have caused widespread impacts and were remarkable because of their persistence. It is therefore of great interest to improve the ability to forecast such events. Weather forecasts at midlatitudes generally show low skill beyond 5–10 days, but long-range forecast skill may increase during extended tropospheric blocking episodes or perturbations of the stratospheric polar vortex, which can affect midlatitude weather for several weeks at a time. Here a simple, linear approach is used to identify previously undocumented persistence in northern European summer and winter temperature anomalies in climate model simulations, corroborated by observations and reanalysis data. For instance, temperature anomalies of at least one standard deviation above or below climatology in March were found to be about 20%–120% more likely than normal if the preceding February was anomalous by 0.5–1.5 standard deviations (with the same sign). The corresponding range for April (i.e., persistence over two months) is between 20% and 80%. The persistence is observed irrespective of the data source or driving mechanisms, and the temperature itself is a more skillful predictor of the temperatures one month ahead than the stratospheric polar vortex or the NAO and even than both factors together. The results suggest potential to conditionally improve the skill of long-range forecasts and enhance recent advancements in dynamical seasonal prediction.
Abstract
Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.
Abstract
Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.
Abstract
The IPCC Fifth Assessment Report highlighted large uncertainty in European precipitation changes in the coming century. This paper investigates the sources of intermodel differences using CMIP5 model European precipitation data. The contribution of atmospheric circulation to differences in precipitation trends is investigated by applying cluster analysis to daily mean sea level pressure (MSLP) data. The resulting classification is used to reconstruct monthly precipitation time series, thereby isolating the component of precipitation variability directly related to atmospheric circulation. Reconstructed observed precipitation and reconstructions of simulated historical and projection data are well correlated with the original precipitation series, showing that circulation variability accounts for a substantial fraction of European precipitation variability. Removing the reconstructed precipitation from the original precipitation leaves a residual component related to noncirculation effects (and any small remaining circulation effects). Intermodel spread in residual future European precipitation trends is substantially reduced compared to the spread of the original precipitation trends. Uncertainty in future atmospheric circulation accounts for more than half of the intermodel variance in twenty-first-century precipitation trends for winter months for both northern and southern Europe. Furthermore, a substantial part of this variance is related to different forced dynamical responses in different models and is therefore potentially reducible. These results highlight the importance of understanding future changes in atmospheric dynamics in achieving more robust projections of regional climate change. Finally, the possible dynamical mechanisms that may drive the future differences in regional circulation and precipitation are illustrated by examining simulated teleconnections with tropical precipitation.
Abstract
The IPCC Fifth Assessment Report highlighted large uncertainty in European precipitation changes in the coming century. This paper investigates the sources of intermodel differences using CMIP5 model European precipitation data. The contribution of atmospheric circulation to differences in precipitation trends is investigated by applying cluster analysis to daily mean sea level pressure (MSLP) data. The resulting classification is used to reconstruct monthly precipitation time series, thereby isolating the component of precipitation variability directly related to atmospheric circulation. Reconstructed observed precipitation and reconstructions of simulated historical and projection data are well correlated with the original precipitation series, showing that circulation variability accounts for a substantial fraction of European precipitation variability. Removing the reconstructed precipitation from the original precipitation leaves a residual component related to noncirculation effects (and any small remaining circulation effects). Intermodel spread in residual future European precipitation trends is substantially reduced compared to the spread of the original precipitation trends. Uncertainty in future atmospheric circulation accounts for more than half of the intermodel variance in twenty-first-century precipitation trends for winter months for both northern and southern Europe. Furthermore, a substantial part of this variance is related to different forced dynamical responses in different models and is therefore potentially reducible. These results highlight the importance of understanding future changes in atmospheric dynamics in achieving more robust projections of regional climate change. Finally, the possible dynamical mechanisms that may drive the future differences in regional circulation and precipitation are illustrated by examining simulated teleconnections with tropical precipitation.
Abstract
This study investigates the stratosphere–troposphere coupling associated with the Scandinavian (SCA) pattern in boreal winter. The results indicate that the SCA impacts stratospheric circulation but that its positive and negative phases have different effects. The positive phase of the SCA (SCA+) pattern is restricted to the troposphere, but the negative phase (SCA−) extends to the upper stratosphere. The asymmetry between phases is also visible in the lead–lag evolution of the stratosphere and troposphere. Prominent stratospheric anomalies are found to be intensified following SCA+ events, but prior to SCA− events. Further analysis reveals that the responses are associated with upward propagation of planetary waves, especially wavenumber 1, which is asymmetric between SCA phases. The wave amplitudes in the stratosphere, originating from the troposphere, are enhanced after the SCA+ events and before the SCA− events. Furthermore, the anomalous planetary wave activity can be understood through its interference with climatological stationary waves. Constructive wave interference is accompanied by clear upward propagation in the SCA+ events, while destructive interference suppresses stratospheric waves in the SCA− events. Our results also reveal that the SCA+ events are more likely to be followed by sudden stratospheric warming (SSW) events, because of the deceleration of stratospheric westerlies following the SCA+ events.
Abstract
This study investigates the stratosphere–troposphere coupling associated with the Scandinavian (SCA) pattern in boreal winter. The results indicate that the SCA impacts stratospheric circulation but that its positive and negative phases have different effects. The positive phase of the SCA (SCA+) pattern is restricted to the troposphere, but the negative phase (SCA−) extends to the upper stratosphere. The asymmetry between phases is also visible in the lead–lag evolution of the stratosphere and troposphere. Prominent stratospheric anomalies are found to be intensified following SCA+ events, but prior to SCA− events. Further analysis reveals that the responses are associated with upward propagation of planetary waves, especially wavenumber 1, which is asymmetric between SCA phases. The wave amplitudes in the stratosphere, originating from the troposphere, are enhanced after the SCA+ events and before the SCA− events. Furthermore, the anomalous planetary wave activity can be understood through its interference with climatological stationary waves. Constructive wave interference is accompanied by clear upward propagation in the SCA+ events, while destructive interference suppresses stratospheric waves in the SCA− events. Our results also reveal that the SCA+ events are more likely to be followed by sudden stratospheric warming (SSW) events, because of the deceleration of stratospheric westerlies following the SCA+ events.
Abstract
This study investigates the interdecadal variation of the Scandinavian (SCA) pattern and corresponding drivers during the boreal winter. It is found that the SCA pattern experiences a prominent regime shift from its negative to positive phase in the early 2000s based on several reanalyses. This interdecadal change contributes to an extensive cooling over Siberia after the early 2000s, revealing its importance for recent variations of climate over Eurasia. The outputs from 35 coupled models within phase 6 of the Coupled Model Intercomparison Project (CMIP6) are also analyzed. The results show that the interdecadal change of the SCA is weak in response to external forcings but can be largely explained by internal variability associated with a change of precipitation over the tropical Atlantic. Further analysis indicates that the enhanced tropical convection induces poleward propagation of Rossby waves and further results in an intensification of geopotential height over the Scandinavian Peninsula during the transition to positive SCA phases. These findings imply a contribution of tropical forcing to the observed interdecadal strengthening of the SCA around the early 2000s and offer an insight into the understanding of future climate change over the Eurasian continent.
Abstract
This study investigates the interdecadal variation of the Scandinavian (SCA) pattern and corresponding drivers during the boreal winter. It is found that the SCA pattern experiences a prominent regime shift from its negative to positive phase in the early 2000s based on several reanalyses. This interdecadal change contributes to an extensive cooling over Siberia after the early 2000s, revealing its importance for recent variations of climate over Eurasia. The outputs from 35 coupled models within phase 6 of the Coupled Model Intercomparison Project (CMIP6) are also analyzed. The results show that the interdecadal change of the SCA is weak in response to external forcings but can be largely explained by internal variability associated with a change of precipitation over the tropical Atlantic. Further analysis indicates that the enhanced tropical convection induces poleward propagation of Rossby waves and further results in an intensification of geopotential height over the Scandinavian Peninsula during the transition to positive SCA phases. These findings imply a contribution of tropical forcing to the observed interdecadal strengthening of the SCA around the early 2000s and offer an insight into the understanding of future climate change over the Eurasian continent.
Abstract
Results are presented from two 60-yr integrations of the troposphere–stratosphere configuration of the U.K. Met. Office’s Unified Model. The integrations were set up identically, apart from different initial conditions, which, nonetheless, were both representative of the early 1990s. Radiative heating rates were calculated using the IS92A projected concentrations of the well-mixed greenhouse gases (GHGs) given by the Intergovernmental Panel on Climate Change, but changes in stratospheric ozone and water vapor were not included. Sea surface conditions were taken from a separate coupled ocean–atmosphere experiment. Both integrations reproduced the familiar pattern of tropospheric warming and a stratospheric cooling increasing with height to about −1.4 K per decade at 1 mb. There was good agreement in the trends apart from in the polar upper stratosphere and, to a greater extent, the polar lower-to-middle stratosphere, where there is significant interannual variability during the winter months. Even after decadal smoothing, the trends in the northern winter were still overshadowed by the variability resulting from the planetary wave forcing from the troposphere. In general, the decadal variability of the Northern Hemisphere stratosphere was not a manifestation of a uniform change throughout each winter but, as with other models, there was a change in the frequency of occurrence of sudden stratospheric warmings. Unlike previous studies, the different results from the two simulations confirm the change in frequency of warmings was due to internal atmospheric variability and not the prescribed changes in GHG concentrations or sea surface conditions. In the southern winter stratosphere the flux of wave activity from the troposphere increased, but any additional dynamical heating was more than offset by the extra radiative cooling from the growing total GHG concentration. Consequently the polar vortex became more stable, with the spring breakdown delayed by 1–2 weeks by the 2050s. Polar stratospheric cloud (PSC) amounts inferred from the predicted temperatures increased in both hemispheres, especially in the early winter. In the Southern Hemisphere, the region of PSC formation expanded both upward and equatorward in response to the temperature trend.
Abstract
Results are presented from two 60-yr integrations of the troposphere–stratosphere configuration of the U.K. Met. Office’s Unified Model. The integrations were set up identically, apart from different initial conditions, which, nonetheless, were both representative of the early 1990s. Radiative heating rates were calculated using the IS92A projected concentrations of the well-mixed greenhouse gases (GHGs) given by the Intergovernmental Panel on Climate Change, but changes in stratospheric ozone and water vapor were not included. Sea surface conditions were taken from a separate coupled ocean–atmosphere experiment. Both integrations reproduced the familiar pattern of tropospheric warming and a stratospheric cooling increasing with height to about −1.4 K per decade at 1 mb. There was good agreement in the trends apart from in the polar upper stratosphere and, to a greater extent, the polar lower-to-middle stratosphere, where there is significant interannual variability during the winter months. Even after decadal smoothing, the trends in the northern winter were still overshadowed by the variability resulting from the planetary wave forcing from the troposphere. In general, the decadal variability of the Northern Hemisphere stratosphere was not a manifestation of a uniform change throughout each winter but, as with other models, there was a change in the frequency of occurrence of sudden stratospheric warmings. Unlike previous studies, the different results from the two simulations confirm the change in frequency of warmings was due to internal atmospheric variability and not the prescribed changes in GHG concentrations or sea surface conditions. In the southern winter stratosphere the flux of wave activity from the troposphere increased, but any additional dynamical heating was more than offset by the extra radiative cooling from the growing total GHG concentration. Consequently the polar vortex became more stable, with the spring breakdown delayed by 1–2 weeks by the 2050s. Polar stratospheric cloud (PSC) amounts inferred from the predicted temperatures increased in both hemispheres, especially in the early winter. In the Southern Hemisphere, the region of PSC formation expanded both upward and equatorward in response to the temperature trend.
Abstract
The authors estimate the change in extreme winter weather events over Europe that is due to a long-term change in the North Atlantic Oscillation (NAO) such as that observed between the 1960s and 1990s. Using ensembles of simulations from a general circulation model, large changes in the frequency of 10th percentile temperature and 90th percentile precipitation events over Europe are found from changes in the NAO. In some cases, these changes are comparable to the expected change in the frequency of events due to anthropogenic forcing over the twenty-first century. Although the results presented here do not affect anthropogenic interpretation of global and annual mean changes in observed extremes, they do show that great care is needed to assess changes due to modes of climate variability when interpreting extreme events on regional and seasonal scales. How changes in natural modes of variability, such as the NAO, could radically alter current climate model predictions of changes in extreme weather events on multidecadal time scales is also discussed.
Abstract
The authors estimate the change in extreme winter weather events over Europe that is due to a long-term change in the North Atlantic Oscillation (NAO) such as that observed between the 1960s and 1990s. Using ensembles of simulations from a general circulation model, large changes in the frequency of 10th percentile temperature and 90th percentile precipitation events over Europe are found from changes in the NAO. In some cases, these changes are comparable to the expected change in the frequency of events due to anthropogenic forcing over the twenty-first century. Although the results presented here do not affect anthropogenic interpretation of global and annual mean changes in observed extremes, they do show that great care is needed to assess changes due to modes of climate variability when interpreting extreme events on regional and seasonal scales. How changes in natural modes of variability, such as the NAO, could radically alter current climate model predictions of changes in extreme weather events on multidecadal time scales is also discussed.
Abstract
Observations show that stratospheric water vapor (SWV) concentrations increased by ~30% between 1980 and 2000. SWV has also been projected to increase by up to a factor of 2 over the twenty-first century. Trends in SWV impact stratospheric temperatures, which may lead to changes in the stratospheric circulation. Perturbations in temperature and wind in the stratosphere have been shown to influence the extratropical tropospheric circulation. This study investigates the response to a uniform doubling in SWV from 3 to 6 ppmv in a comprehensive stratosphere-resolving atmospheric GCM. The increase in SWV causes stratospheric cooling with a maximum amplitude of 5–6 K in the polar lower stratosphere and 2–3 K in the tropical lower stratosphere. The zonal wind on the upper flanks of the subtropical jets is more westerly by up to ~5 m s−1. Changes in resolved wave drag in the stratosphere result in an increase in the strength of tropical upwelling associated with the Brewer–Dobson circulation of ~10% throughout the year. In the troposphere, the increase in SWV causes significant meridional dipole changes in the midlatitude zonal-mean zonal wind of up to 2.8 m s−1 at 850 hPa, which are largest in boreal winter in both hemispheres. This suggests a more poleward storm track under uniformly increased stratospheric water vapor. The circulation changes in both the stratosphere and troposphere are almost entirely due to the increase in SWV at pressures greater than 50 hPa. The results show that long-term trends in SWV may impact stratospheric temperatures and wind, the strength of the Brewer–Dobson circulation, and extratropical surface climate.
Abstract
Observations show that stratospheric water vapor (SWV) concentrations increased by ~30% between 1980 and 2000. SWV has also been projected to increase by up to a factor of 2 over the twenty-first century. Trends in SWV impact stratospheric temperatures, which may lead to changes in the stratospheric circulation. Perturbations in temperature and wind in the stratosphere have been shown to influence the extratropical tropospheric circulation. This study investigates the response to a uniform doubling in SWV from 3 to 6 ppmv in a comprehensive stratosphere-resolving atmospheric GCM. The increase in SWV causes stratospheric cooling with a maximum amplitude of 5–6 K in the polar lower stratosphere and 2–3 K in the tropical lower stratosphere. The zonal wind on the upper flanks of the subtropical jets is more westerly by up to ~5 m s−1. Changes in resolved wave drag in the stratosphere result in an increase in the strength of tropical upwelling associated with the Brewer–Dobson circulation of ~10% throughout the year. In the troposphere, the increase in SWV causes significant meridional dipole changes in the midlatitude zonal-mean zonal wind of up to 2.8 m s−1 at 850 hPa, which are largest in boreal winter in both hemispheres. This suggests a more poleward storm track under uniformly increased stratospheric water vapor. The circulation changes in both the stratosphere and troposphere are almost entirely due to the increase in SWV at pressures greater than 50 hPa. The results show that long-term trends in SWV may impact stratospheric temperatures and wind, the strength of the Brewer–Dobson circulation, and extratropical surface climate.