Search Results
You are looking at 1 - 9 of 9 items for :
- Author or Editor: Adam J. Clark x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
This study investigates probabilistic forecasts made using different convection-allowing ensemble configurations for a three-day period in June 2010 when numerous heavy-rain-producing mesoscale convective systems (MCSs) occurred in the United States. These MCSs developed both along a baroclinic zone in the Great Plains, and in association with a long-lived mesoscale convective vortex (MCV) in Texas and Arkansas. Four different ensemble configurations were developed using an ensemble-based data assimilation system. Two configurations used continuously cycled data assimilation, and two started the assimilation 24 h prior to the initialization of each forecast. Each configuration was run with both a single set of physical parameterizations and a mixture of physical parameterizations. These four ensemble forecasts were also compared with an ensemble run in real time by the Center for the Analysis and Prediction of Storms (CAPS). All five of these ensemble systems produced skillful probabilistic forecasts of the heavy-rain-producing MCSs, with the ensembles using mixed physics providing forecasts with greater skill and less overall bias compared to the single-physics ensembles. The forecasts using ensemble-based assimilation systems generally outperformed the real-time CAPS ensemble at lead times of 6–18 h, whereas the CAPS ensemble was the most skillful at forecast hours 24–30, though it also exhibited a wet bias. The differences between the ensemble precipitation forecasts were found to be related in part to differences in the analysis of the MCV and its environment, which in turn affected the evolution of errors in the forecasts of the MCSs. These results underscore the importance of representing model error in convection-allowing ensemble analysis and prediction systems.
Abstract
This study investigates probabilistic forecasts made using different convection-allowing ensemble configurations for a three-day period in June 2010 when numerous heavy-rain-producing mesoscale convective systems (MCSs) occurred in the United States. These MCSs developed both along a baroclinic zone in the Great Plains, and in association with a long-lived mesoscale convective vortex (MCV) in Texas and Arkansas. Four different ensemble configurations were developed using an ensemble-based data assimilation system. Two configurations used continuously cycled data assimilation, and two started the assimilation 24 h prior to the initialization of each forecast. Each configuration was run with both a single set of physical parameterizations and a mixture of physical parameterizations. These four ensemble forecasts were also compared with an ensemble run in real time by the Center for the Analysis and Prediction of Storms (CAPS). All five of these ensemble systems produced skillful probabilistic forecasts of the heavy-rain-producing MCSs, with the ensembles using mixed physics providing forecasts with greater skill and less overall bias compared to the single-physics ensembles. The forecasts using ensemble-based assimilation systems generally outperformed the real-time CAPS ensemble at lead times of 6–18 h, whereas the CAPS ensemble was the most skillful at forecast hours 24–30, though it also exhibited a wet bias. The differences between the ensemble precipitation forecasts were found to be related in part to differences in the analysis of the MCV and its environment, which in turn affected the evolution of errors in the forecasts of the MCSs. These results underscore the importance of representing model error in convection-allowing ensemble analysis and prediction systems.
Abstract
The diurnal cycles of rainfall in 5-km grid-spacing convection-resolving and 22-km grid-spacing non-convection-resolving configurations of the Weather Research and Forecasting (WRF) model are compared to see if significant improvements can be obtained by using fine enough grid spacing to explicitly resolve convection. Diurnally averaged Hovmöller diagrams, spatial correlation coefficients computed in Hovmöller space, equitable threat scores (ETSs), and biases for forecasts conducted from 1 April to 25 July 2005 over a large portion of the central United States are used for the comparisons. A subjective comparison using Hovmöller diagrams of diurnally averaged rainfall show that the diurnal cycle representation in the 5-km configuration is clearly superior to that in the 22-km configuration during forecast hours 24–48. The superiority of the 5-km configuration is validated by much higher spatial correlation coefficients than in the 22-km configuration. During the first 24 forecast hours the 5-km model forecasts appear to be more adversely affected by model “spinup” processes than the 22-km model forecasts, and it is less clear, subjectively, which configuration has the better diurnal cycle representation, although spatial correlation coefficients are slightly higher in the 22-km configuration. ETSs in both configurations have diurnal oscillations with relative maxima occurring in both configurations at forecast hours corresponding to 0000–0300 LST, while biases also have diurnal oscillations with relative maxima (largest errors) in the 22-km (5-km) configuration occurring at forecast hours corresponding to 1200 (1800) LST. At all forecast hours, ETSs from the 22-km configuration are higher than those in the 5-km configuration. This inconsistency with some of the results obtained using the aforementioned spatial correlation coefficients reinforces discussion in past literature that cautions against using “traditional” verification statistics, such as ETS, to compare high- to low-resolution forecasts.
Abstract
The diurnal cycles of rainfall in 5-km grid-spacing convection-resolving and 22-km grid-spacing non-convection-resolving configurations of the Weather Research and Forecasting (WRF) model are compared to see if significant improvements can be obtained by using fine enough grid spacing to explicitly resolve convection. Diurnally averaged Hovmöller diagrams, spatial correlation coefficients computed in Hovmöller space, equitable threat scores (ETSs), and biases for forecasts conducted from 1 April to 25 July 2005 over a large portion of the central United States are used for the comparisons. A subjective comparison using Hovmöller diagrams of diurnally averaged rainfall show that the diurnal cycle representation in the 5-km configuration is clearly superior to that in the 22-km configuration during forecast hours 24–48. The superiority of the 5-km configuration is validated by much higher spatial correlation coefficients than in the 22-km configuration. During the first 24 forecast hours the 5-km model forecasts appear to be more adversely affected by model “spinup” processes than the 22-km model forecasts, and it is less clear, subjectively, which configuration has the better diurnal cycle representation, although spatial correlation coefficients are slightly higher in the 22-km configuration. ETSs in both configurations have diurnal oscillations with relative maxima occurring in both configurations at forecast hours corresponding to 0000–0300 LST, while biases also have diurnal oscillations with relative maxima (largest errors) in the 22-km (5-km) configuration occurring at forecast hours corresponding to 1200 (1800) LST. At all forecast hours, ETSs from the 22-km configuration are higher than those in the 5-km configuration. This inconsistency with some of the results obtained using the aforementioned spatial correlation coefficients reinforces discussion in past literature that cautions against using “traditional” verification statistics, such as ETS, to compare high- to low-resolution forecasts.
Abstract
An experiment is described that is designed to examine the contributions of model, initial condition (IC), and lateral boundary condition (LBC) errors to the spread and skill of precipitation forecasts from two regional eight-member 15-km grid-spacing Weather Research and Forecasting (WRF) ensembles covering a 1575 km × 1800 km domain. It is widely recognized that a skillful ensemble [i.e., an ensemble with a probability distribution function (PDF) that generates forecast probabilities with high resolution and reliability] should account for both error sources. Previous work suggests that model errors make a larger contribution than IC and LBC errors to forecast uncertainty in the short range before synoptic-scale error growth becomes nonlinear. However, in a regional model with unperturbed LBCs, the infiltration of the lateral boundaries will negate increasing spread. To obtain a better understanding of the contributions to the forecast errors in precipitation and to examine the window of forecast lead time before unperturbed ICs and LBCs begin to cause degradation in ensemble forecast skill, the “perfect model” assumption is made in an ensemble that uses perturbed ICs and LBCs (PILB ensemble), and the “perfect analysis” assumption is made in another ensemble that uses mixed physics–dynamic cores (MP ensemble), thus isolating the error contributions. For the domain and time period used in this study, unperturbed ICs and LBCs in the MP ensemble begin to negate increasing spread around forecast hour 24, and ensemble forecast skill as measured by relative operating characteristic curves (ROC scores) becomes lower in the MP ensemble than in the PILB ensemble, with statistical significance beginning after forecast hour 69. However, degradation in forecast skill in the MP ensemble relative to the PILB ensemble is not observed in an analysis of deterministic forecasts calculated from each ensemble using the probability matching method. Both ensembles were found to lack statistical consistency (i.e., to be underdispersive), with the PILB ensemble (MP ensemble) exhibiting more (less) statistical consistency with respect to forecast lead time. Spread ratios in the PILB ensemble are greater than those in the MP ensemble at all forecast lead times and thresholds examined; however, ensemble variance in the MP ensemble is greater than that in the PILB ensemble during the first 24 h of the forecast. This discrepancy in spread measures likely results from greater bias in the MP ensemble leading to an increase in ensemble variance and decrease in spread ratio relative to the PILB ensemble.
Abstract
An experiment is described that is designed to examine the contributions of model, initial condition (IC), and lateral boundary condition (LBC) errors to the spread and skill of precipitation forecasts from two regional eight-member 15-km grid-spacing Weather Research and Forecasting (WRF) ensembles covering a 1575 km × 1800 km domain. It is widely recognized that a skillful ensemble [i.e., an ensemble with a probability distribution function (PDF) that generates forecast probabilities with high resolution and reliability] should account for both error sources. Previous work suggests that model errors make a larger contribution than IC and LBC errors to forecast uncertainty in the short range before synoptic-scale error growth becomes nonlinear. However, in a regional model with unperturbed LBCs, the infiltration of the lateral boundaries will negate increasing spread. To obtain a better understanding of the contributions to the forecast errors in precipitation and to examine the window of forecast lead time before unperturbed ICs and LBCs begin to cause degradation in ensemble forecast skill, the “perfect model” assumption is made in an ensemble that uses perturbed ICs and LBCs (PILB ensemble), and the “perfect analysis” assumption is made in another ensemble that uses mixed physics–dynamic cores (MP ensemble), thus isolating the error contributions. For the domain and time period used in this study, unperturbed ICs and LBCs in the MP ensemble begin to negate increasing spread around forecast hour 24, and ensemble forecast skill as measured by relative operating characteristic curves (ROC scores) becomes lower in the MP ensemble than in the PILB ensemble, with statistical significance beginning after forecast hour 69. However, degradation in forecast skill in the MP ensemble relative to the PILB ensemble is not observed in an analysis of deterministic forecasts calculated from each ensemble using the probability matching method. Both ensembles were found to lack statistical consistency (i.e., to be underdispersive), with the PILB ensemble (MP ensemble) exhibiting more (less) statistical consistency with respect to forecast lead time. Spread ratios in the PILB ensemble are greater than those in the MP ensemble at all forecast lead times and thresholds examined; however, ensemble variance in the MP ensemble is greater than that in the PILB ensemble during the first 24 h of the forecast. This discrepancy in spread measures likely results from greater bias in the MP ensemble leading to an increase in ensemble variance and decrease in spread ratio relative to the PILB ensemble.
Abstract
From 9 to 11 June 2010, a mesoscale convective vortex (MCV) was associated with several periods of heavy rainfall that led to flash flooding. During the overnight hours, mesoscale convective systems (MCSs) developed that moved slowly and produced heavy rainfall over small areas in south-central Texas on 9 June, north Texas on 10 June, and western Arkansas on 11 June. In this study, forecasts of this event from the Center for the Analysis and Prediction of Storms' Storm-Scale Ensemble Forecast system are examined. This ensemble, with 26 members at 4-km horizontal grid spacing, included a few members that very accurately predicted the development, maintenance, and evolution of the heavy-rain-producing MCSs, along with a majority of members that had substantial errors in their precipitation forecasts. The processes favorable for the initiation, organization, and maintenance of these heavy-rain-producing MCSs are diagnosed by comparing ensemble members with accurate and inaccurate forecasts. Even within a synoptic environment known to be conducive to extreme local rainfall, there was considerable spread in the ensemble's rainfall predictions. Because all ensemble members included an anomalously moist environment, the precipitation predictions were insensitive to the atmospheric moisture. However, the development of heavy precipitation overnight was very sensitive to the intensity and evolution of convection the previous day. Convective influences on the strength of the MCV and its associated dome of cold air at low levels determined whether subsequent deep convection was initiated and maintained. In all, this ensemble provides quantitative and qualitative information about the mesoscale processes that are most favorable (or unfavorable) for localized extreme rainfall.
Abstract
From 9 to 11 June 2010, a mesoscale convective vortex (MCV) was associated with several periods of heavy rainfall that led to flash flooding. During the overnight hours, mesoscale convective systems (MCSs) developed that moved slowly and produced heavy rainfall over small areas in south-central Texas on 9 June, north Texas on 10 June, and western Arkansas on 11 June. In this study, forecasts of this event from the Center for the Analysis and Prediction of Storms' Storm-Scale Ensemble Forecast system are examined. This ensemble, with 26 members at 4-km horizontal grid spacing, included a few members that very accurately predicted the development, maintenance, and evolution of the heavy-rain-producing MCSs, along with a majority of members that had substantial errors in their precipitation forecasts. The processes favorable for the initiation, organization, and maintenance of these heavy-rain-producing MCSs are diagnosed by comparing ensemble members with accurate and inaccurate forecasts. Even within a synoptic environment known to be conducive to extreme local rainfall, there was considerable spread in the ensemble's rainfall predictions. Because all ensemble members included an anomalously moist environment, the precipitation predictions were insensitive to the atmospheric moisture. However, the development of heavy precipitation overnight was very sensitive to the intensity and evolution of convection the previous day. Convective influences on the strength of the MCV and its associated dome of cold air at low levels determined whether subsequent deep convection was initiated and maintained. In all, this ensemble provides quantitative and qualitative information about the mesoscale processes that are most favorable (or unfavorable) for localized extreme rainfall.
Abstract
It has been observed that the percentage of tropical cyclones originating from easterly waves is much higher in the North Atlantic (∼60%) than in the western North Pacific (10%–20%). This disparity between the two ocean basins exists because the majority (71%) of tropical cyclogeneses in the western North Pacific occur in the favorable synoptic environments evolved from monsoon gyres. Because the North Atlantic does not have a monsoon trough similar to the western North Pacific that stimulates monsoon gyre formation, a much larger portion of tropical cyclogeneses than in the western North Pacific are caused directly by easterly waves.
This study also analyzed the percentage of easterly waves that form tropical cyclones in the western North Pacific. By carefully separating easterly waves from the lower-tropospheric disturbances generated by upper-level vortices that originate from the tropical upper-tropospheric trough (TUTT), it is observed that 25% of easterly waves form tropical cyclones in this region. Because TUTT-induced lower-tropospheric disturbances often become embedded in the trade easterlies and resemble easterly waves, they have likely been mistakenly identified as easterly waves. Inclusion of these “false” easterly waves in the “true” easterly wave population would result in an underestimation of the percentage of easterly waves that form tropical cyclones, because the TUTT-induced disturbances rarely stimulate tropical cyclogenesis.
However, an analysis of monsoon gyre formation mechanisms over the western North Pacific reveals that 82% of monsoon gyres develop through a monsoon trough–easterly wave interaction. Thus, it can be inferred that 58% (i.e., 82% × 71%) of tropical cyclones in this region are an indirect result of easterly waves. Including the percentage of tropical cyclones that form directly from easterly waves (∼25%), it is found that tropical cyclones formed directly and indirectly from easterly waves account for over 80% of tropical cyclogeneses in the western North Pacific. This is more than the percentage that has been documented by previous studies in the North Atlantic.
Abstract
It has been observed that the percentage of tropical cyclones originating from easterly waves is much higher in the North Atlantic (∼60%) than in the western North Pacific (10%–20%). This disparity between the two ocean basins exists because the majority (71%) of tropical cyclogeneses in the western North Pacific occur in the favorable synoptic environments evolved from monsoon gyres. Because the North Atlantic does not have a monsoon trough similar to the western North Pacific that stimulates monsoon gyre formation, a much larger portion of tropical cyclogeneses than in the western North Pacific are caused directly by easterly waves.
This study also analyzed the percentage of easterly waves that form tropical cyclones in the western North Pacific. By carefully separating easterly waves from the lower-tropospheric disturbances generated by upper-level vortices that originate from the tropical upper-tropospheric trough (TUTT), it is observed that 25% of easterly waves form tropical cyclones in this region. Because TUTT-induced lower-tropospheric disturbances often become embedded in the trade easterlies and resemble easterly waves, they have likely been mistakenly identified as easterly waves. Inclusion of these “false” easterly waves in the “true” easterly wave population would result in an underestimation of the percentage of easterly waves that form tropical cyclones, because the TUTT-induced disturbances rarely stimulate tropical cyclogenesis.
However, an analysis of monsoon gyre formation mechanisms over the western North Pacific reveals that 82% of monsoon gyres develop through a monsoon trough–easterly wave interaction. Thus, it can be inferred that 58% (i.e., 82% × 71%) of tropical cyclones in this region are an indirect result of easterly waves. Including the percentage of tropical cyclones that form directly from easterly waves (∼25%), it is found that tropical cyclones formed directly and indirectly from easterly waves account for over 80% of tropical cyclogeneses in the western North Pacific. This is more than the percentage that has been documented by previous studies in the North Atlantic.
Abstract
Despite an increased understanding of the environments that favor tornado formation, a high false-alarm rate for tornado warnings still exists, suggesting that tornado formation could be a volatile process that is largely internal to each storm. To assess this, an ensemble of 30 supercell simulations was constructed based on small variations to the nontornadic and tornadic environmental profiles composited from the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). All simulations produce distinct supercells despite occurring in similar environments. Both the tornadic and nontornadic ensemble members possess ample subtornadic surface vertical vorticity; the determinative factor is whether this vorticity can be converged and stretched by the low-level updraft. Each of the 15 members in the tornadic VORTEX2 ensemble produces a long-track, intense tornado. Although there are notable differences in the precipitation and near-surface buoyancy fields, each storm features strong dynamic lifting of surface air with vertical vorticity. This lifting is due to a steady low-level mesocyclone, which is linked to the ingestion of predominately streamwise environmental vorticity. In contrast, each nontornadic VORTEX2 simulation features a supercell with a disorganized low-level mesocyclone, due to crosswise vorticity in the lowest few hundred meters in the nontornadic environment. This generally leads to insufficient dynamic lifting and stretching to accomplish tornadogenesis. Even so, 40% of the nontornadic VORTEX2 ensemble members become weakly tornadic. This implies that chaotic within-storm details can still play a role and, occasionally, lead to marginally tornadic vortices in suboptimal storms.
Abstract
Despite an increased understanding of the environments that favor tornado formation, a high false-alarm rate for tornado warnings still exists, suggesting that tornado formation could be a volatile process that is largely internal to each storm. To assess this, an ensemble of 30 supercell simulations was constructed based on small variations to the nontornadic and tornadic environmental profiles composited from the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). All simulations produce distinct supercells despite occurring in similar environments. Both the tornadic and nontornadic ensemble members possess ample subtornadic surface vertical vorticity; the determinative factor is whether this vorticity can be converged and stretched by the low-level updraft. Each of the 15 members in the tornadic VORTEX2 ensemble produces a long-track, intense tornado. Although there are notable differences in the precipitation and near-surface buoyancy fields, each storm features strong dynamic lifting of surface air with vertical vorticity. This lifting is due to a steady low-level mesocyclone, which is linked to the ingestion of predominately streamwise environmental vorticity. In contrast, each nontornadic VORTEX2 simulation features a supercell with a disorganized low-level mesocyclone, due to crosswise vorticity in the lowest few hundred meters in the nontornadic environment. This generally leads to insufficient dynamic lifting and stretching to accomplish tornadogenesis. Even so, 40% of the nontornadic VORTEX2 ensemble members become weakly tornadic. This implies that chaotic within-storm details can still play a role and, occasionally, lead to marginally tornadic vortices in suboptimal storms.
Abstract
This work evaluates the performance of a recently developed cloud-scale lightning data assimilation technique implemented within the Weather Research and Forecasting Model running at convection-allowing scales (4-km grid spacing). Data provided by the Earth Networks Total Lightning Network for the contiguous United States (CONUS) were assimilated in real time over 67 days spanning the 2013 warm season (May–July). The lightning data were assimilated during the first 2 h of simulations each day. Bias-corrected, neighborhood-based, equitable threat scores (BC-ETSs) were the chief metric used to quantify the skill of the forecasts utilizing this assimilation scheme. Owing to inferior observational data quality over mountainous terrain, this evaluation focused on the eastern two-thirds of the United States.
During the first 3 h following the assimilation (i.e., 3-h forecasts), all the simulations suffered from a high wet bias in forecasted accumulated precipitation (APCP), particularly for the lightning assimilation run (LIGHT). Forecasts produced by LIGHT, however, had a noticeable, statistically significant (α = 0.05) improvement over those by the control run (CTRL) up to 6 h into the forecast with BC-ETS differences often exceeding 0.4. This improvement was seen independently of the APCP threshold (ranging from 2.5 to 50 mm) and the neighborhood radius (ranging from 0 to 40 km) selected. Past 6 h of the forecast, the APCP fields from LIGHT progressively converged to that of CTRL probably due to the longer-term evolution being bounded by the large-scale model environment. Thus, this computationally inexpensive lightning assimilation scheme shows considerable promise for routinely improving short-term (≤6 h) forecasts of high-impact weather by convection-allowing forecast models.
Abstract
This work evaluates the performance of a recently developed cloud-scale lightning data assimilation technique implemented within the Weather Research and Forecasting Model running at convection-allowing scales (4-km grid spacing). Data provided by the Earth Networks Total Lightning Network for the contiguous United States (CONUS) were assimilated in real time over 67 days spanning the 2013 warm season (May–July). The lightning data were assimilated during the first 2 h of simulations each day. Bias-corrected, neighborhood-based, equitable threat scores (BC-ETSs) were the chief metric used to quantify the skill of the forecasts utilizing this assimilation scheme. Owing to inferior observational data quality over mountainous terrain, this evaluation focused on the eastern two-thirds of the United States.
During the first 3 h following the assimilation (i.e., 3-h forecasts), all the simulations suffered from a high wet bias in forecasted accumulated precipitation (APCP), particularly for the lightning assimilation run (LIGHT). Forecasts produced by LIGHT, however, had a noticeable, statistically significant (α = 0.05) improvement over those by the control run (CTRL) up to 6 h into the forecast with BC-ETS differences often exceeding 0.4. This improvement was seen independently of the APCP threshold (ranging from 2.5 to 50 mm) and the neighborhood radius (ranging from 0 to 40 km) selected. Past 6 h of the forecast, the APCP fields from LIGHT progressively converged to that of CTRL probably due to the longer-term evolution being bounded by the large-scale model environment. Thus, this computationally inexpensive lightning assimilation scheme shows considerable promise for routinely improving short-term (≤6 h) forecasts of high-impact weather by convection-allowing forecast models.
Abstract
Probabilistic quantitative precipitation forecasts (PQPFs) from the storm-scale ensemble forecast system run by the Center for Analysis and Prediction of Storms during the spring of 2009 are evaluated using area under the relative operating characteristic curve (ROC area). ROC area, which measures discriminating ability, is examined for ensemble size n from 1 to 17 members and for spatial scales ranging from 4 to 200 km.
Expectedly, incremental gains in skill decrease with increasing n. Significance tests comparing ROC areas for each n to those of the full 17-member ensemble revealed that more members are required to reach statistically indistinguishable PQPF skill relative to the full ensemble as forecast lead time increases and spatial scale decreases. These results appear to reflect the broadening of the forecast probability distribution function (PDF) of future atmospheric states associated with decreasing spatial scale and increasing forecast lead time. They also illustrate that efficient allocation of computing resources for convection-allowing ensembles requires careful consideration of spatial scale and forecast length desired.
Abstract
Probabilistic quantitative precipitation forecasts (PQPFs) from the storm-scale ensemble forecast system run by the Center for Analysis and Prediction of Storms during the spring of 2009 are evaluated using area under the relative operating characteristic curve (ROC area). ROC area, which measures discriminating ability, is examined for ensemble size n from 1 to 17 members and for spatial scales ranging from 4 to 200 km.
Expectedly, incremental gains in skill decrease with increasing n. Significance tests comparing ROC areas for each n to those of the full 17-member ensemble revealed that more members are required to reach statistically indistinguishable PQPF skill relative to the full ensemble as forecast lead time increases and spatial scale decreases. These results appear to reflect the broadening of the forecast probability distribution function (PDF) of future atmospheric states associated with decreasing spatial scale and increasing forecast lead time. They also illustrate that efficient allocation of computing resources for convection-allowing ensembles requires careful consideration of spatial scale and forecast length desired.
Abstract
The NOAA Warn-on-Forecast System (WoFS) is an experimental rapidly updating convection-allowing ensemble designed to provide probabilistic operational guidance on high-impact thunderstorm hazards. The current WoFS uses physics diversity to help maintain ensemble spread. We assess the systematic impacts of the three WoFS PBL schemes—YSU, MYJ, and MYNN—using novel, object-based methods tailored to thunderstorms. Very short forecast lead times of 0–3 h are examined, which limits phase errors and thereby facilitates comparisons of observed and model storms that occurred in the same area at the same time. This evaluation framework facilitates assessment of systematic PBL scheme impacts on storms and storm environments. Forecasts using all three PBL schemes exhibit overly narrow ranges of surface temperature, dewpoint, and wind speed. The surface biases do not generally decrease at later forecast initialization times, indicating that systematic PBL scheme errors are not well mitigated by data assimilation. The YSU scheme exhibits the least bias of the three in surface temperature and moisture and in many sounding-derived convective variables. Interscheme environmental differences are similar both near and far from storms and qualitatively resemble the differences analyzed in previous studies. The YSU environments exhibit stronger mixing, as expected of nonlocal PBL schemes; are slightly less favorable for storm intensification; and produce correspondingly weaker storms than the MYJ and MYNN environments. On the other hand, systematic interscheme differences in storm morphology and storm location forecast skill are negligible. Overall, the results suggest that calibrating forecasts to correct for systematic differences between PBL schemes may modestly improve WoFS and other convection-allowing ensemble guidance at short lead times.
Abstract
The NOAA Warn-on-Forecast System (WoFS) is an experimental rapidly updating convection-allowing ensemble designed to provide probabilistic operational guidance on high-impact thunderstorm hazards. The current WoFS uses physics diversity to help maintain ensemble spread. We assess the systematic impacts of the three WoFS PBL schemes—YSU, MYJ, and MYNN—using novel, object-based methods tailored to thunderstorms. Very short forecast lead times of 0–3 h are examined, which limits phase errors and thereby facilitates comparisons of observed and model storms that occurred in the same area at the same time. This evaluation framework facilitates assessment of systematic PBL scheme impacts on storms and storm environments. Forecasts using all three PBL schemes exhibit overly narrow ranges of surface temperature, dewpoint, and wind speed. The surface biases do not generally decrease at later forecast initialization times, indicating that systematic PBL scheme errors are not well mitigated by data assimilation. The YSU scheme exhibits the least bias of the three in surface temperature and moisture and in many sounding-derived convective variables. Interscheme environmental differences are similar both near and far from storms and qualitatively resemble the differences analyzed in previous studies. The YSU environments exhibit stronger mixing, as expected of nonlocal PBL schemes; are slightly less favorable for storm intensification; and produce correspondingly weaker storms than the MYJ and MYNN environments. On the other hand, systematic interscheme differences in storm morphology and storm location forecast skill are negligible. Overall, the results suggest that calibrating forecasts to correct for systematic differences between PBL schemes may modestly improve WoFS and other convection-allowing ensemble guidance at short lead times.