Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Adrian J. Matthews x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Adrian J. Matthews and George N. Kiladis

Abstract

The interaction between high-frequency transient disturbances and convection, and the Madden–Julian Oscillation (MJO), is investigated using NCEP–NCAR reanalysis and satellite outgoing longwave radiation data for 15 northern winters. During the phase of the MJO with enhanced convection over the East Indian Ocean and Indonesia, and suppressed convection over the South Pacific convergence zone, both the Asian–Pacific jet and the region of upper-tropospheric tropical easterlies over the warm pool are displaced westward. These changes in the basic state lead to a weaker or “leakier” waveguide in the Asian–Pacific jet, with a westward-displaced “forbidden” region of tropical easterlies, such that high-frequency transient waves propagate equatorward into the deep Tropics over the central Pacific near the date line. As these waves induce convection in the region of ascent and reduced static stability ahead of the upper-level cyclonic disturbances, there is an enhancement of high-frequency convective variability over the central Pacific intertropical convergence zone during this phase of the MJO. This enhanced high-frequency convective variability appears to project back onto intraseasonal timescales and forms an integral part of the slowly varying diabatic heating field of the MJO. In the opposite phase of the MJO, the Asian–Pacific jet is extended eastward and there is an almost continuous waveguide across the Pacific. Together with the expanded forbidden region of tropical easterlies over the warm pool, this leads to a more zonal propagation of high-frequency transients along the waveguide with less equatorward propagation, and hence reduced high-frequency convective variability over the tropical central Pacific. There is also evidence of high-frequency waves propagating into the Indian Ocean region at the beginning of the MJO cycle, which may be important in the initiation of intraseasonal convective anomalies there.

Full access
Jonty D. Hall, Adrian J. Matthews, and David J. Karoly

Abstract

The observed relationship between tropical cyclone activity in the Australian region and the Madden–Julian oscillation (MJO) has been examined using 20 yr of outgoing longwave radiation, NCEP–NCAR reanalysis, and best track tropical cyclone data. The MJO strongly modulates the climatological pattern of cyclogenesis in the Australian region, where significantly more (fewer) cyclones form in the active (inactive) phase of the MJO. This modulation is more pronounced to the northwest of Australia. The relationship between tropical cyclone activity and the MJO was strengthened during El Niño periods. Variations of the large-scale dynamical conditions necessary for cyclogenesis were explored, and it was found that MJO-induced perturbations of these parameters correspond with the observed variation in cyclone activity. In particular, 850-hPa relative vorticity anomalies attributable to the MJO were found to be an excellent diagnostic of the changes in the large-scale cyclogenesis patterns.

Full access
Beata Latos, Thierry Lefort, Maria K. Flatau, Piotr J. Flatau, Donaldi S. Permana, Dariusz B. Baranowski, Jaka A. I. Paski, Erwin Makmur, Eko Sulystyo, Philippe Peyrillé, Zhe Feng, Adrian J. Matthews, and Jerome M. Schmidt

Abstract

On the basis of detailed analysis of a case study and long-term climatology, it is shown that equatorial waves and their interactions serve as precursors for extreme rain and flood events in the central Maritime Continent region of southwest Sulawesi, Indonesia. Meteorological conditions on 22 January 2019 leading to heavy rainfall and devastating flooding in this area are studied. It is shown that a convectively coupled Kelvin wave (CCKW) and a convectively coupled equatorial Rossby wave (CCERW) embedded within the larger-scale envelope of the Madden–Julian oscillation (MJO) enhanced convective phase, contributed to the onset of a mesoscale convective system that developed over the Java Sea. Low-level convergence from the CCKW forced mesoscale convective organization and orographic ascent of moist air over the slopes of southwest Sulawesi. Climatological analysis shows that 92% of December–February floods and 76% of extreme rain events in this region were immediately preceded by positive low-level westerly wind anomalies. It is estimated that both CCKWs and CCERWs propagating over Sulawesi double the chance of floods and extreme rain event development, while the probability of such hazardous events occurring during their combined activity is 8 times greater than on a random day. While the MJO is a key component shaping tropical atmospheric variability, it is shown that its usefulness as a single factor for extreme weather-driven hazard prediction is limited.

Restricted access