Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Alexander V. Ryzhkov x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Jacob T. Carlin
,
Alexander V. Ryzhkov
,
Jeffrey C. Snyder
, and
Alexander Khain

Abstract

The assimilation of radar data into storm-scale numerical weather prediction models has been shown to be beneficial for successfully modeling convective storms. Because of the difficulty of directly assimilating reflectivity (Z), hydrometeor mixing ratios, and sometimes rainfall rate, are often retrieved from Z observations using retrieval relations, and are assimilated as state variables. The most limiting (although widely employed) cases of these relations are derived, and their assumptions and limitations are discussed.

To investigate the utility of these retrieval relations for liquid water content (LWC) and ice water content (IWC) in rain and hail as well as the potential for improvement using polarimetric variables, two models with spectral bin microphysics coupled with a polarimetric radar operator are used: a one-dimensional melting hail model and the two-dimensional Hebrew University Cloud Model. The relationship between LWC and Z in pure rain varies spatially and temporally, with biases clearly seen using the normalized number concentration. Retrievals using Z perform the poorest while specific attenuation and specific differential phase shift (K DP) perform much better. Within rain–hail mixtures, separate estimation of LWC and IWC is necessary. Prohibitively large errors in the retrieved LWC may result when using Z. The quantity K DP can be used to effectively retrieve the LWC and to isolate the contribution of IWC to Z. It is found that the relationship between Z and IWC is a function of radar wavelength, maximum hail diameter, and principally the height below the melting layer, which must be accounted for in order to achieve accurate retrievals.

Full access
Matthew R. Kumjian
,
Alexander V. Ryzhkov
,
Valery M. Melnikov
, and
Terry J. Schuur

Abstract

In recent years, there has been widespread interest in collecting and analyzing rapid updates of radar data in severe convective storms. To this end, conventional single-polarization rapid-scan radars and phased array radar systems have been employed in numerous studies. However, rapid updates of dual-polarization radar data in storms are not widely available. For this study, a rapid scanning strategy is developed for the polarimetric prototype research Weather Surveillance Radar-1988 Doppler (WSR-88D) radar in Norman, Oklahoma (KOUN), which emulates the future capabilities of a polarimetric multifunction phased array radar (MPAR). With this strategy, data are collected over an 80° sector with 0.5° azimuthal spacing and 250-m radial resolution (“super resolution”), with 12 elevation angles. Thus, full volume scans over a limited area are collected every 71–73 s.

The scanning strategy was employed on a cyclic nontornadic supercell storm in western Oklahoma on 1 June 2008. The evolution of the polarimetric signatures in the supercell is analyzed. The repetitive pattern of evolution of these polarimetric features is found to be directly tied to the cyclic occlusion process of the low-level mesocyclone. The cycle for each of the polarimetric signatures is presented and described in detail, complete with a microphysical interpretation. In doing so, for the first time the bulk microphysical properties of the storm on small time scales (inferred from polarimetric data) are analyzed. The documented evolution of the polarimetric signatures could be used operationally to aid in the detection and determination of various stages of the low-level mesocyclone occlusion.

Full access
Jacob T. Carlin
,
Jidong Gao
,
Jeffrey C. Snyder
, and
Alexander V. Ryzhkov

Abstract

Achieving accurate storm-scale analyses and reducing the spinup time of modeled convection is a primary motivation for the assimilation of radar reflectivity data. One common technique of reflectivity data assimilation is using a cloud analysis, which inserts temperature and moisture increments and hydrometeors deduced from radar reflectivity via empirical relations to induce and sustain updraft circulations. Polarimetric radar data have the ability to provide enhanced insight into the microphysical and dynamic structure of convection. Thus far, however, relatively little has been done to leverage these data for numerical weather prediction. In this study, the Advanced Regional Prediction System’s cloud analysis is modified from its original reflectivity-based formulation to provide moisture and latent heat adjustments based on the detection of differential reflectivity columns, which can serve as proxies for updrafts in deep moist convection and, subsequently, areas of saturation and latent heat release. Cycled model runs using both the original cloud analysis and above modifications are performed for two high-impact weather cases: the 19 May 2013 central Oklahoma tornadic supercells and the 25 May 2016 north-central Kansas tornadic supercell. The analyses and forecasts of convection qualitatively and quantitatively improve in both cases, including more coherent analyzed updrafts, more realistic forecast reflectivity structures, a better correspondence between forecast updraft helicity tracks and radar-derived rotation tracks, and improved frequency biases and equitable threat scores for reflectivity. Based on these encouraging results, further exploration of the assimilation of dual-polarization radar data into storm-scale models is warranted.

Full access
Silke Trömel
,
Alexander V. Ryzhkov
,
Malte Diederich
,
Kai Mühlbauer
,
Stefan Kneifel
,
Jeffrey Snyder
, and
Clemens Simmer

Abstract

Multisensor observations of anvil mammatus are analyzed in order to gain a more detailed understanding of their spatiotemporal structure and microphysical characterization. Remarkable polarimetric radar signatures are detected for the Pentecost 2014 supercell in Northrhine Westfalia, Germany, and severe storms in Oklahoma along their mammatus-bearing anvil bases. Radar reflectivity at horizontal polarization Z H and cross-correlation coefficient ρ HV decrease downward toward the bottom of the anvil while differential reflectivity Z DR rapidly increases, consistent with the signature of crystal depositional growth. The differential reflectivity Z DR within mammatus exceeds 2 dB in the Pentecost storm and in several Oklahoma severe convective storms examined for this paper. Observations from a zenith-pointing Ka-band cloud radar and a Doppler wind lidar during the Pentecost storm indicate the presence of a supercooled liquid layer of at least 200–300-m depth near the anvil base at temperatures between −15° and −30°C. These liquid drops, which are presumably generated in localized areas of vertical velocities of up to 1.5 m s−1, coexist with ice particles identified by cloud radar. The authors hypothesize that pristine crystals grow rapidly within these layers of supercooled water, and that oriented planar ice crystals falling from the liquid layers lead to high Z DR at precipitation radar frequencies. A mammatus detection strategy using precipitation radar observations is presented, based on a methodology so far mainly used for the detection of updrafts in convective storms. Owing to the presence of a supercooled liquid layer detected above the mammatus lobes, the new detection strategy might also be relevant for aviation safety.

Full access
R. Jeffrey Trapp
,
David M. Schultz
,
Alexander V. Ryzhkov
, and
Ronald L. Holle

Abstract

A significant winter precipitation event occurred on 8–9 March 1994 in Oklahoma. Snow accumulations greater than 30 cm (12 in.) were measured within a narrow corridor in northern Oklahoma. On the synoptic scale and mesoscale, a correspondence between large snow accumulations and 600-hPa frontogenesis was revealed; the precipitation was formed above the cold frontal surface, owing to midtropospheric ascent associated with the cross-frontal circulation in a region of elevated conditional instability. The location of such a narrow corridor of large accumulations was not, however, disclosed by any patterns in the radar reflectivity data. Indeed, during this event, an elongated maximum of snow accumulation was not associated with a persistent “band” of enhanced reflectivity and vice versa.

Dual-polarization and dual-Doppler radar data allowed for a novel analysis of winter precipitation processes and structures, within the context of the larger-scale diagnosis. It was possible to identify, in order of distance southward toward the surface cold front: (i) an elevated convective element, which was classified as an elevated thunderstorm and may have functioned as an ice crystal “generator” cell, embedded within a broad region of generally stratiform precipitation; (ii) a reflectivity band and associated rain–snow transition zone, the evolution and structure of which apparently were coupled to the effects of melting precipitation and strong vertical wind shear; and (iii) a mixed-phase precipitation-generating, prolific lightning-producing, nonelevated thunderstorm cell that was sustained in the postfrontal air in part by virtue of its rotational dynamics.

Full access
Cameron R. Homeyer
,
Alexandre O. Fierro
,
Benjamin A. Schenkel
,
Anthony C. Didlake Jr.
,
Greg M. McFarquhar
,
Jiaxi Hu
,
Alexander V. Ryzhkov
,
Jeffrey B. Basara
,
Amanda M. Murphy
, and
Jonathan Zawislak

Abstract

Polarimetric radar observations from the NEXRAD WSR-88D operational radar network in the contiguous United States, routinely available since 2013, are used to reveal three prominent microphysical signatures in landfalling tropical cyclones: 1) hydrometeor size sorting within the eyewall convection, 2) vertical displacement of the melting layer within the inner core, and 3) dendritic growth layers within stratiform regions of the inner core. Size sorting signatures within eyewall convection are observed with greater frequency and prominence in more intense hurricanes, and are observed predominantly within the deep-layer environmental wind shear vector-relative quadrants that harbor the greatest frequency of deep convection (i.e., downshear and left-of-shear). Melting-layer displacements are shown that exceed 1 km in altitude compared to melting-layer altitudes in outer rainbands and are complemented by analyses of archived dropsonde data. Dendritic growth and attendant snow aggregation signatures in the inner core are found to occur more often when echo-top altitudes are low (≤10 km MSL), nearer the −15°C isotherm commonly associated with dendritic growth. These signatures, uniquely observed by polarimetric radar, provide greater insight into the physical structure and thermodynamic characteristics of tropical cyclones, which are important for improving rainfall estimation and the representation of tropical cyclones in numerical models.

Full access