Search Results

You are looking at 1 - 10 of 13 items for :

  • Author or Editor: Alexander V. Ryzhkov x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Alexander V. Ryzhkov

Abstract

A simple model of the radar scattering by atmospheric particles is used to interpret all elements of the covariance scattering matrix. The components of the covariance scattering matrix and corresponding polarimetric variables are expressed via a limited number of integral parameters that characterize distributions of sizes, shapes, and orientations of meteorological scatterers.

The co–cross-polar correlation coefficients ρ xh and ρ measured in the horizontal–vertical linear polarization basis are the major focus of this study. It is shown that the magnitudes of both coefficients are almost entirely determined by orientation of particles and do not depend on particle sizes and shapes. The phases of these coefficients can be used to detect the presence of melting hail or wet snow in the radar resolution volume.

A model of the mean canting angle of raindrops varying along a propagation path is developed to examine effects of propagation on the depolarization variables such as ρ xh , ρ , and linear depolarization ratio. Analysis shows that depolarization variables are very sensitive to the mean canting angle averaged over a long propagation path.

Full access
Scott E. Giangrande
and
Alexander V. Ryzhkov

Abstract

In the presence of partial beam blockage (PBB), weather radar measurements can experience significant bias that directly compromises the accuracy of the hydrologic applications. Techniques for the calibration of the radar reflectivity factor Z and differential reflectivity Z DR, measured with dual-polarization weather radars in the presence of partial beam obstruction, are examined in this paper.

The proposed Z DR calibration technique utilizes radar measurements of Z DR in light rain and dry aggregated snow at unblocked and blocked elevations. This calibration technique was tested for the National Severe Storms Laboratory’s (NSSL’s) Cimarron radar that suffers from PBB, and a polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) that does not experience PBB. Results indicate that the Z DR bias that is associated with PBB can be calibrated with an accuracy of 0.2–0.3 dB, provided that the dataset is sufficiently large.

Calibration of Z in the presence of PBB is based on the idea of self-consistency among Z, Z DR, and the specific differential phase K DP in rain. The self-consistency calibration of Z from the Cimarron radar is performed following an area–time integral method. Integration is partitioned into small azimuthal sectors to assess the azimuthal modulation of the Z bias. The suggested technique is validated by direct comparisons of reflectivity factors that are measured by the Cimarron radar and the unobstructed operational WSR-88D radar. It is shown that the azimuthal modulation of Z that is caused by PBB is well captured, and the accuracy of the Z calibration is within 2–3 dB.

Full access
Dušan S. Zrnić
and
Alexander V. Ryzhkov

Abstract

Chaff contaminates estimates of precipitation amounts; hence, it is important to remove (or censor) its presence from the fields of radar reflectivity. It is demonstrated that efficient and direct identification of chaff is possible with a polarimetric radar. Specifically considered are the horizontal and vertical polarization basis and covariances of corresponding returned signals. Pertinent polarimetric variables are the copolar correlation coefficient, differential reflectivity, and the linear depolarization ratio. Two models are used to compute the expected values of these variables. In one, chaff is approximated with a Hertzian dipole and, in the other, with a thin wire antenna. In these models chaff is assumed to have a uniform distribution of flutter angles (angle between the horizontal plane and chaff axis). The two models produce nearly equivalent results. Also shown are polarimetric signatures of chaff observed in the presence of precipitation. Inferences about chaff's orientation are made from comparisons between measured and observed differential reflectivity and the cross-correlation coefficient.

Full access
Alexander V. Ryzhkov
and
Dusan S. Zrnic

Abstract

Rainfall estimation from specific differential phases in meteorological situations with significant anomalous propagation (AP) is discussed. It is shown that the correlation coefficient between horizontally and vertically polarized backscatter signals and local variability of the total differential phase can be good identifiers of ground clutter–contaminated data. Further, it is suggested how to estimate rainfall in regions of ground clutter caused by AP.

Full access
Petar Bukovčić
,
Alexander V. Ryzhkov
, and
Jacob T. Carlin

Abstract

The intrinsic uncertainty of radar-based retrievals in snow originates from a large diversity of snow growth habits, densities, and particle size distributions, all of which can make interpreting radar measurements of snow very challenging. The application of polarimetric radar for snow measurements can mitigate some of these issues. In this study, a novel polarimetric method for quantification of the extinction coefficient and visibility in snow, based on the joint use of radar reflectivity at horizontal polarization Z and specific differential phase K DP, is introduced. A large 2D-video-disdrometer snow dataset from central Oklahoma is used to derive a polarimetric bivariate power-law relation for the extinction coefficient, σ e ( K DP , Z ) = γ K DP α Z β . The relation is derived for particle aspect ratios ranging from 0.5 to 0.8 and the width of the canting angle distribution ranging from 0° to 40°, values typical of aggregated snow, and validated via theoretical and analytical derivations/simulations. The multiplier of the relation is sensitive to variations in particles’ densities, the width of the canting angle distribution, and particles’ aspect ratios, whereas the relation’s exponents are practically invariant to changes in the latter two parameters. This novel approach is applied to polarimetric S-band WSR-88D data and verified against previous studies and in situ measurements of the extinction coefficient for four snow events in the eastern United States. The polarimetric radar estimates of the extinction coefficient exhibit smaller biases in comparison to previous studies concerning the ground measurements. The results indicate that there is good potential for reliable radar estimates of visibility from polarimetric weather radars, a parameter inversely proportional to the extinction coefficient.

Full access
Edward A. Brandes
,
Alexander V. Ryzhkov
, and
Dus̆an S. Zrnić

Abstract

Specific differential propagation phase (K DP) is examined for estimating convective rainfall in Colorado and Kansas. Estimates are made at S band with K DP alone and in combination with radar reflectivity (Z H). Results are compared to gauge observations by computing bias factors, defined as the sum of gauge-measured rainfalls divided by the sum of radar estimates at gauges reporting rainfall, and the correlation coefficient between the gauge and radar-estimated amounts. Rainfall accumulations computed from positive-only values of K DP (provided Z H ≥ 25 dBZ) yield bias factors that vary from 0.76 to 2.42 for 3 storms in Colorado and from 0.78 to 1.46 for 10 storms in Kansas. Correlation coefficients between gauge-observed and radar-estimated rainfalls are 0.76 to 0.95. When negative K DP’s are included as negative rainfall rates, bias factors range from 0.81 to 3.00 in Colorado and from 0.84 to 2.31 in Kansas. In most storms, the correlation between gauge and radar rainfalls decreases slightly.

In an experiment with the K DP/Z H combination, rainfall rates are computed from K DP when K DP is ≥0.4° km−1 and from Z H for K DP < 0.4° km−1 and Z H ≥ 25 dBZ. Neglect of the negative K DP’s and substitution of the always positive Z H rainfall rates result in a tendency to overestimate rainfall. Bias factors are 0.63–1.46 for Colorado storms and 0.68–0.97 for Kansas storms, and correlation coefficients between gauge and radar amounts are 0.80–0.95. In yet another test with the K DP/Z H pair, rainfall estimates are computed from K DP when Z H ≥ 40 dBZ and from Z H when 25 ⩽ Z H < 40 dBZ. For this experiment, bias factors range from 0.90 to 1.91 in Colorado and from 0.88 to 1.46 in Kansas. Correlation coefficients are 0.80–0.96.

Since bias factors and correlation coefficients between estimated rainfalls and gauge observations for K DP are similar to those for radar reflectivity, there was no obvious benefit with K DP rainfalls for a well-calibrated radar. Large underestimates with K DP in two storms were attributed to rainfalls dominated by small drops. In one storm, the problem was aggravated by widespread negative K DP’s thought related to vertical gradients of precipitation. An advantage of K DP-derived rainfall estimates confirmed here is an insensitivity to anomalous propagation.

Full access
Dusan S. Zrnić
,
Valery M. Melnikov
, and
Alexander V. Ryzhkov

Abstract

Characteristics of the magnitude and phase of correlation coefficients between horizontally and vertically polarized returns from ground clutter echoes are quantified by analyzing histograms obtained with an 11-cm wavelength weather surveillance radar in Norman, Oklahoma. The radar receives simultaneously horizontal and vertical (SHV) electric fields and can transmit either horizontal fields or both vertical and horizontal fields. The differences between correlations obtained in this SHV mode and correlations measured in alternate H, V mode are reviewed; a histogram of differential phase obtained in Florida using alternate H, V mode is also presented. Data indicate that the backscatter differential phase of clutter has a broad histogram that completely overlaps the narrow histogram of precipitation echoes. This is important as it implies that a potent discriminator for separating clutter from meteorological echoes is the texture of the differential phase. Values of the copolar cross-correlation coefficient from clutter overlap completely those from precipitation, and effective discrimination is possible only if averages in range are taken. It is demonstrated that the total differential phase (system and backscatter) depends on the polarimetric measurement technique and the type of scatterers. In special circumstances, such as calibrating or monitoring the radar, clutter signal can be beneficial. Specifically, system differential phase can be estimated from histograms of ground clutter, receiver differential phase can be estimated from precipitation returns, and from these two, the differential phase of transmitted waves is easily computed.

Full access
Yadong Wang
,
Jian Zhang
,
Alexander V. Ryzhkov
, and
Lin Tang

Abstract

To obtain accurate radar quantitative precipitation estimation (QPE) for extreme rainfall events such as land-falling typhoon systems in complex terrain, a new method was developed for C-band polarimetric radars. The new methodology includes a correction method based on vertical profiles of the specific differential propagation phase (VPSDP) for low-level blockage and an optimal relation between rainfall rate ( ) and the specific differential phase ( ). In the VPSDP-based correction approach, a screening process is applied to fields, where missing or unreliable data from lower tilts caused by severe beam blockage are replaced with data from upper and unblocked tilts. The data from upper tilts are adjusted to account for variations in the vertical profile of . The corrected field is then used for rain-rate estimations. To acquire an accurate QPE result, a new relation for C-band polarimetric radars was derived through simulations using drop size distribution (DSD) and drop shape relation (DSR) observations from typhoon systems in Taiwan. The VPSDP-based correction method with the new relation was evaluated using the typhoon cases of Morakot (2009) and Fanapi (2010).

Full access
Silke Trömel
,
Michael Ziegert
,
Alexander V. Ryzhkov
,
Christian Chwala
, and
Clemens Simmer

Abstract

The variability in raindrop size distributions and attenuation effects are the two major sources of uncertainty in radar-based quantitative precipitation estimation (QPE) even when dual-polarization radars are used. New methods are introduced to exploit the measurements by commercial microwave radio links to reduce the uncertainties in both attenuation correction and rainfall estimation. The ratio α of specific attenuation A and specific differential phase K DP is the key parameter used in attenuation correction schemes and the recently introduced R(A) algorithm. It is demonstrated that the factor α can be optimized using microwave links at Ku band oriented along radar radials with an accuracy of about 20%–30%. The microwave links with arbitrary orientation can be utilized to optimize the intercepts in the R(K DP) and R(A) relations with an accuracy of about 25%. The performance of the suggested methods is tested using the polarimetric C-band radar operated by the German Weather Service on Mount Hohenpeissenberg in southern Germany and two radially oriented Ku-band microwave links from Ericsson GmbH.

Full access
Jacob T. Carlin
,
Edwin L. Dunnavan
,
Alexander V. Ryzhkov
, and
Mariko Oue

Abstract

Quasi-vertical profiles (QVPs) of polarimetric radar data have emerged as a powerful tool for studying precipitation microphysics. Various studies have found enhancements in specific differential phase K dp in regions of suspected secondary ice production (SIP) due to rime splintering. Similar K dp enhancements have also been found in regions of sublimating snow, another proposed SIP process. This work explores these K dp signatures for two cases of sublimating snow using nearly collocated S- and Ka-band radars. The presence of the signature was inconsistent between the radars, prompting exploration of alternative causes. Idealized simulations are performed using a radar beam-broadening model to explore the impact of nonuniform beam filling (NBF) on the observed reflectivity Z and K dp within the sublimation layer. Rather than an intrinsic increase in ice concentration, the observed K dp enhancements can instead be explained by NBF in the presence of sharp vertical gradients of Z and K dp within the sublimation zone, which results in a K dp bias dipole. The severity of the bias is sensitive to the Z gradient and radar beamwidth and elevation angle, which explains its appearance at only one radar. In addition, differences in scanning strategies and range thresholds during QVP processing can constructively enhance these positive K dp biases by excluding the negative portion of the dipole. These results highlight the need to consider NBF effects in regions not traditionally considered (e.g., in pure snow) due to the increased K dp fidelity afforded by QVPs and the subsequent ramifications this has on the observability of sublimational SIP.

Significance Statement

Many different processes can cause snowflakes to break apart into numerous tiny pieces, including when they evaporate into dry air. Purported evidence of this phenomenon has been seen in data from some weather radars, but we noticed it was not seen in data from others. In this work we use case studies and models to show that this signature may actually be an artifact from the radar beam becoming too big and there being too much variability of the precipitation within it. While this breakup process may actually be occurring in reality, these results suggest we may have trouble observing it with typical weather radars.

Free access