Search Results
You are looking at 1 - 10 of 41 items for
- Author or Editor: Allen B. White x
- Refine by Access: All Content x
Abstract
Nonbrightband (NBB) rain is a shallow, orographic precipitation that does not produce a radar bright band as a result of melting ice crystals. However, NBB rain is not the same as warm rain, which excludes ice from being involved in the microphysical growth of precipitation. Despite this difference, NBB rain is often treated as warm rain in the literature, and past studies have mostly ignored the role of ice. Here, we use two wet seasons (2015/16 and 2016/17) at four precipitation-observing sites in the Northern Coast Ranges of California to show the role of echo top height and ice in determining NBB rain intensity. It was found that NBB rain was only absent of bright bands 32%–46% of the time depending on location of the site. Additionally, all NBB rain rates that exceeded 10 mm h−1 exhibited observable bright bands during the hour period. We also define growth efficiency (GE) as the ability of shallow rain clouds to produce raindrops larger than drizzle size (D > 0.5 mm). High-GE rain drop size distributions were composed of fewer small drops and more large drops than low-GE rain, which was mostly drizzle. High-GE rain occurred with echo top heights above the freezing level where rapid growth of precipitation was observed by radar. Echo tops that only extended 1 km or less above the freezing level suggested hydrometeor growth from mixed-phase processes, indicating that ice may be present in coastal precipitation at warmer temperatures than previously considered.
Abstract
Nonbrightband (NBB) rain is a shallow, orographic precipitation that does not produce a radar bright band as a result of melting ice crystals. However, NBB rain is not the same as warm rain, which excludes ice from being involved in the microphysical growth of precipitation. Despite this difference, NBB rain is often treated as warm rain in the literature, and past studies have mostly ignored the role of ice. Here, we use two wet seasons (2015/16 and 2016/17) at four precipitation-observing sites in the Northern Coast Ranges of California to show the role of echo top height and ice in determining NBB rain intensity. It was found that NBB rain was only absent of bright bands 32%–46% of the time depending on location of the site. Additionally, all NBB rain rates that exceeded 10 mm h−1 exhibited observable bright bands during the hour period. We also define growth efficiency (GE) as the ability of shallow rain clouds to produce raindrops larger than drizzle size (D > 0.5 mm). High-GE rain drop size distributions were composed of fewer small drops and more large drops than low-GE rain, which was mostly drizzle. High-GE rain occurred with echo top heights above the freezing level where rapid growth of precipitation was observed by radar. Echo tops that only extended 1 km or less above the freezing level suggested hydrometeor growth from mixed-phase processes, indicating that ice may be present in coastal precipitation at warmer temperatures than previously considered.
Abstract
Surface-based measurements are used to define some of the important macrophysical and optical properties of marine clouds. These measurements were taken during five different marine field programs. A progression is made from a midlatitude marine stratocumulus regime with an average cloud fraction of 0.7 and a median cloud base of 460 m to a marine tropical regime with an average cloud fraction of 0.2 and a median cloud base of 1050 m. Measurements of the solar transmission coefficient taken during the Atlantic Stratocumulus Transition Experiment (ASTEX) were used in a radiative transfer algorithm to produce values of albedo, absorption, and optical depth. A microwave radiometer provided measurements of the liquid water path (LWP). For a given LWP, the ASTEX optical depths averaged a factor of 2 smaller than the optical depths observed during the marine stratocumulus phase of the First International Cloud Climatology Program Regional Experiment (FIRE) at San Nicolas Island, off the coast of southern California. The variability of boundary-layer aerosol concentrations measured during ASTEX is sufficient to produce a factor of 2 change in optical depth. Further evidence suggests that the cloud droplet effective radius was nearly a factor of 2 larger during ASTFX than during FIRE.
Abstract
Surface-based measurements are used to define some of the important macrophysical and optical properties of marine clouds. These measurements were taken during five different marine field programs. A progression is made from a midlatitude marine stratocumulus regime with an average cloud fraction of 0.7 and a median cloud base of 460 m to a marine tropical regime with an average cloud fraction of 0.2 and a median cloud base of 1050 m. Measurements of the solar transmission coefficient taken during the Atlantic Stratocumulus Transition Experiment (ASTEX) were used in a radiative transfer algorithm to produce values of albedo, absorption, and optical depth. A microwave radiometer provided measurements of the liquid water path (LWP). For a given LWP, the ASTEX optical depths averaged a factor of 2 smaller than the optical depths observed during the marine stratocumulus phase of the First International Cloud Climatology Program Regional Experiment (FIRE) at San Nicolas Island, off the coast of southern California. The variability of boundary-layer aerosol concentrations measured during ASTEX is sufficient to produce a factor of 2 change in optical depth. Further evidence suggests that the cloud droplet effective radius was nearly a factor of 2 larger during ASTFX than during FIRE.
Abstract
A strong elevated temperature inversion in a landfalling winter storm in northern California produced two simultaneous melting layers with associated radar bright bands. The storm was observed with scanning and profiling radars. Serial radiosonde launches from the scanning radar site precisely documented the evolving temperature structure of the air mass that produced the double bright band. The radiosonde and radar observations, which were coincident in location and time, clearly illustrate the cause (two melting layers) and effect (two bright bands) of this unusual phenomenon. An automated algorithm for determining the melting-layer height from profiling radar data was tested on this situation. In its operational form, the algorithm detects only the lower melting layer, but in modified form it is capable of detecting both melting layers simultaneously.
Abstract
A strong elevated temperature inversion in a landfalling winter storm in northern California produced two simultaneous melting layers with associated radar bright bands. The storm was observed with scanning and profiling radars. Serial radiosonde launches from the scanning radar site precisely documented the evolving temperature structure of the air mass that produced the double bright band. The radiosonde and radar observations, which were coincident in location and time, clearly illustrate the cause (two melting layers) and effect (two bright bands) of this unusual phenomenon. An automated algorithm for determining the melting-layer height from profiling radar data was tested on this situation. In its operational form, the algorithm detects only the lower melting layer, but in modified form it is capable of detecting both melting layers simultaneously.
Abstract
Prolonged periods (e.g., several days or more) of heavy precipitation can result in sustained high-impact flooding. Herein, an investigation of long-duration heavy precipitation events (HPEs), defined as periods comprising ≥3 days with precipitation exceeding the climatological 95th percentile, is conducted for 1979–2019 for the U.S. West Coast, specifically Northern California. An objective flow-based categorization method is applied to identify principal large-scale flow patterns for the events. Four categories are identified and examined through composite analyses and case studies. Two of the categories are characterized by a strong zonal jet stream over the eastern North Pacific, while the other two are characterized by atmospheric blocking over the central North Pacific and the Bering Sea–Alaska region, respectively. The composites and case studies demonstrate that the flow patterns for the HPEs tend to remain in place for several days, maintaining strong baroclinicity and promoting occurrences of multiple cyclones in rapid succession near the West Coast. The successive cyclones result in persistent water vapor flux and forcing for ascent over Northern California, sustaining heavy precipitation. For the zonal jet patterns, cyclones affecting the West Coast tend to occur in the poleward jet exit region in association with cyclonic Rossby wave breaking. For the blocking patterns, cyclones tend to occur in association with anticyclonic Rossby wave breaking on the downstream flank of the block. For Bering Sea–Alaska blocking cases, cyclones can move into this region in conjunction with cyclonically breaking waves that extend into the eastern North Pacific from the upstream flank of the block.
Abstract
Prolonged periods (e.g., several days or more) of heavy precipitation can result in sustained high-impact flooding. Herein, an investigation of long-duration heavy precipitation events (HPEs), defined as periods comprising ≥3 days with precipitation exceeding the climatological 95th percentile, is conducted for 1979–2019 for the U.S. West Coast, specifically Northern California. An objective flow-based categorization method is applied to identify principal large-scale flow patterns for the events. Four categories are identified and examined through composite analyses and case studies. Two of the categories are characterized by a strong zonal jet stream over the eastern North Pacific, while the other two are characterized by atmospheric blocking over the central North Pacific and the Bering Sea–Alaska region, respectively. The composites and case studies demonstrate that the flow patterns for the HPEs tend to remain in place for several days, maintaining strong baroclinicity and promoting occurrences of multiple cyclones in rapid succession near the West Coast. The successive cyclones result in persistent water vapor flux and forcing for ascent over Northern California, sustaining heavy precipitation. For the zonal jet patterns, cyclones affecting the West Coast tend to occur in the poleward jet exit region in association with cyclonic Rossby wave breaking. For the blocking patterns, cyclones tend to occur in association with anticyclonic Rossby wave breaking on the downstream flank of the block. For Bering Sea–Alaska blocking cases, cyclones can move into this region in conjunction with cyclonically breaking waves that extend into the eastern North Pacific from the upstream flank of the block.
Abstract
Humidity variability at the top of the marine atmospheric boundary layer and in the overlying free troposphere was examined using data collected during the marine stratocumulus phase of the First Regional Experiment (FIRE) of the International Satellite Cloud Climatology Program. A time series of the humidity structure-function parameter C q 2 derived from Doppler wind profiler reflectivity data is compared to a concurrent time series of specific humidity q. Both q and its vertical gradient were calculated from rawinsonde data obtained from sondes launched within 500 m of the profiler. Time-height correlation analysis between log(C q 2) and log(∂q/∂z)2 shows that the two time series are highly correlated at and just above the inversion base, with r approximately equal to 0.7. The correlation is slightly lower in the free troposphere where r is about 0.5 (a value of r greater than 0.2 is significant at the 95% confidence level). There is also correlation between log(C q 2) and log(q), which is maximized at an offset in height between the two instruments.
Closer analysis of a short-lived clearing event shows locally reduced values of C q 2 in a region of enhanced ∂q/∂z. This apparent paradox can be explained by noting the absence of enhanced entrainment associated with cloud-top radiative cooling. The combined wind profiler-rawinsonde datasets were also used to estimate the entrainment velocity w e for clear and cloudy conditions. An average value of w e equal to 0.38 cm s−1 was obtained for cloudy conditions; for the clear case a value of 0.13 cm s−1 was obtained.
Abstract
Humidity variability at the top of the marine atmospheric boundary layer and in the overlying free troposphere was examined using data collected during the marine stratocumulus phase of the First Regional Experiment (FIRE) of the International Satellite Cloud Climatology Program. A time series of the humidity structure-function parameter C q 2 derived from Doppler wind profiler reflectivity data is compared to a concurrent time series of specific humidity q. Both q and its vertical gradient were calculated from rawinsonde data obtained from sondes launched within 500 m of the profiler. Time-height correlation analysis between log(C q 2) and log(∂q/∂z)2 shows that the two time series are highly correlated at and just above the inversion base, with r approximately equal to 0.7. The correlation is slightly lower in the free troposphere where r is about 0.5 (a value of r greater than 0.2 is significant at the 95% confidence level). There is also correlation between log(C q 2) and log(q), which is maximized at an offset in height between the two instruments.
Closer analysis of a short-lived clearing event shows locally reduced values of C q 2 in a region of enhanced ∂q/∂z. This apparent paradox can be explained by noting the absence of enhanced entrainment associated with cloud-top radiative cooling. The combined wind profiler-rawinsonde datasets were also used to estimate the entrainment velocity w e for clear and cloudy conditions. An average value of w e equal to 0.38 cm s−1 was obtained for cloudy conditions; for the clear case a value of 0.13 cm s−1 was obtained.
Abstract
Using NOAA’s S-band High-Power Snow-Level Radar (HPSLR), a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter Dm from the measured reflectivity Z produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, North Carolina. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.
Abstract
Using NOAA’s S-band High-Power Snow-Level Radar (HPSLR), a technique for estimating the rain drop size distribution (DSD) above the radar is presented. This technique assumes the DSD can be described by a four parameter, generalized gamma distribution (GGD). Using the radar’s measured average Doppler velocity spectrum and a value (assumed, measured, or estimated) of the vertical air motion w, an estimate of the GGD is obtained. Four different methods can be used to obtain w. One method that estimates a mean mass-weighted raindrop diameter Dm from the measured reflectivity Z produces realistic DSDs compared to prior literature examples. These estimated DSDs provide evidence that the radar can retrieve the smaller drop sizes constituting the “drizzle” mode part of the DSD. This estimation technique was applied to 19 h of observations from Hankins, North Carolina. Results support the concept that DSDs can be modeled using GGDs with a limited range of parameters. Further work is needed to validate the described technique for estimating DSDs in more varied precipitation types and to verify the vertical air motion estimates.
Abstract
This study examines the impact of microphysics regime on the relationship between orographic forcing and orographic rain in the coastal mountains of Northern California using >4000 h of data from profiling Doppler radars, rain gauges, and a GPS receiver collected over 10 cool seasons. Orographic forcing is documented by hourly upslope flow, integrated water vapor (IWV), and IWV flux observed along the coast at Bodega Bay (BBY; 15 m MSL). Microphysics regime is inferred in the coastal mountains at Cazadero (CZC; 478 m MSL), where hourly periods of brightband (BB) and nonbrightband (NBB) rain are designated. BB rain is associated with a microphysics regime dominated by the seeder–feeder process while NBB rain is associated with a microphysics regime dominated by the warm-rain process. Mean BBY upslope flow, IWV, and IWV flux are ~16%, ~5%, and ~19% larger, respectively, for NBB rain compared to BB rain, while mean CZC rain rate is ~33% larger for BB rain compared to NBB rain. The orographic enhancement ratio of CZC to BBY rain rate is 3.7 during NBB rain and 2.7 during BB rain. Rain rate at CZC increases as orographic forcing at BBY increases. For a given amount of BBY orographic forcing, mean CZC rain rates are larger for BB rain compared to NBB rain. Correlation coefficients associated with the relationship between CZC rain rate and BBY orographic forcing are smaller for NBB rain relative to BB rain, but these differences are not statistically significant.
Abstract
This study examines the impact of microphysics regime on the relationship between orographic forcing and orographic rain in the coastal mountains of Northern California using >4000 h of data from profiling Doppler radars, rain gauges, and a GPS receiver collected over 10 cool seasons. Orographic forcing is documented by hourly upslope flow, integrated water vapor (IWV), and IWV flux observed along the coast at Bodega Bay (BBY; 15 m MSL). Microphysics regime is inferred in the coastal mountains at Cazadero (CZC; 478 m MSL), where hourly periods of brightband (BB) and nonbrightband (NBB) rain are designated. BB rain is associated with a microphysics regime dominated by the seeder–feeder process while NBB rain is associated with a microphysics regime dominated by the warm-rain process. Mean BBY upslope flow, IWV, and IWV flux are ~16%, ~5%, and ~19% larger, respectively, for NBB rain compared to BB rain, while mean CZC rain rate is ~33% larger for BB rain compared to NBB rain. The orographic enhancement ratio of CZC to BBY rain rate is 3.7 during NBB rain and 2.7 during BB rain. Rain rate at CZC increases as orographic forcing at BBY increases. For a given amount of BBY orographic forcing, mean CZC rain rates are larger for BB rain compared to NBB rain. Correlation coefficients associated with the relationship between CZC rain rate and BBY orographic forcing are smaller for NBB rain relative to BB rain, but these differences are not statistically significant.
Abstract
A previous study showed success in determining the convective boundary layer depth with radar wind-profiling radars using fuzzy logic methods, and improvements to the earlier work are discussed. The improved method uses the Vaisala multipeak picking (MPP) procedure to identify the atmospheric signal in radar spectra in place of a fuzzy logic peak picking procedure that was previously used. The method then applies fuzzy logic techniques to calculate the depth of the convective boundary layer. The planetary boundary layer depth algorithm is improved with respect to the one used in the previous study in that it adds information obtained from the small-scale turbulence (vertical profiles of the spectral width of the vertical velocity), while also still using vertical profiles of the radar-derived refractive index structure parameter C 2 n and the variance of vertical velocity. Modifications to the fuzzy logic rules (especially to those using vertical velocity data) that improve the algorithm’s accuracy in cloudy boundary layers are incorporated. In addition, a reliability threshold value to the fuzzy logic–derived score is applied to eliminate PBL depth data values with low score values. These low score values correspond to periods when the PBL structure does not match the conceptual model of the convective PBL built into the algorithm. Also, as a final step, an optional temporal continuity test on boundary layer depth has been developed that helps improve the algorithm’s skill. A comparison with independent boundary layer depth estimations made “by eye” by meteorologists at two radar wind-profiler sites, significantly different in their characteristics, shows that the new improved method gives significantly more accurate estimates of the boundary layer depth than does the previous method, and also much better estimates than the simpler “standard” method of selecting the peak of C 2 n . The new method produces an absolute error of the mixing-depth estimates comparable to the vertical range resolution of the profilers.
Abstract
A previous study showed success in determining the convective boundary layer depth with radar wind-profiling radars using fuzzy logic methods, and improvements to the earlier work are discussed. The improved method uses the Vaisala multipeak picking (MPP) procedure to identify the atmospheric signal in radar spectra in place of a fuzzy logic peak picking procedure that was previously used. The method then applies fuzzy logic techniques to calculate the depth of the convective boundary layer. The planetary boundary layer depth algorithm is improved with respect to the one used in the previous study in that it adds information obtained from the small-scale turbulence (vertical profiles of the spectral width of the vertical velocity), while also still using vertical profiles of the radar-derived refractive index structure parameter C 2 n and the variance of vertical velocity. Modifications to the fuzzy logic rules (especially to those using vertical velocity data) that improve the algorithm’s accuracy in cloudy boundary layers are incorporated. In addition, a reliability threshold value to the fuzzy logic–derived score is applied to eliminate PBL depth data values with low score values. These low score values correspond to periods when the PBL structure does not match the conceptual model of the convective PBL built into the algorithm. Also, as a final step, an optional temporal continuity test on boundary layer depth has been developed that helps improve the algorithm’s skill. A comparison with independent boundary layer depth estimations made “by eye” by meteorologists at two radar wind-profiler sites, significantly different in their characteristics, shows that the new improved method gives significantly more accurate estimates of the boundary layer depth than does the previous method, and also much better estimates than the simpler “standard” method of selecting the peak of C 2 n . The new method produces an absolute error of the mixing-depth estimates comparable to the vertical range resolution of the profilers.
Abstract
This observational study of westward-directed gap flows through the Columbia River Gorge uses three radar wind profilers during two winter seasons between October 2015 and April 2017, with a focus on the gap-exit region at Troutdale, Oregon. Of the 92 gap-flow events identified at Troutdale, the mean duration was 38.5 h, the mean gap-jet speed was 12 m s−1, and the mean gap-flow depth was 570 m MSL. The mean gap-jet height and gap-flow depth were situated below the top of the inner gorge, while a maximum depth of 1087 m MSL was contained within the gorge’s outer-wall rim. The mean gap-flow depth was deepest in the cold-air source region east of the gorge and decreased westward to the coast. Strong gap-flow events were longer lived, deeper, and capped by stronger vertical shear than their weak counterparts, and strong (weak) events were forced primarily by a cold-interior anticyclone (offshore cyclone). Deep gap-flow events were longer lived, stronger, and had weaker capping vertical shear than shallow events, and represented a combination of gap-flow and synoptic forcing. Composite temporal analysis shows that gap-flow strength (depth) was maximized midevent (early event), freezing rain was most prevalent during the second half of the event, and accumulated precipitation was greatest late-event. Gap-flow events tended to begin (end) during the evening (morning) hours and were most persistent in January. Surface wind gusts and snow occurrences around Portland, Oregon, were associated primarily with the deepest gap flows, whereas freezing rain occurred predominantly during shallow gap flows.
Abstract
This observational study of westward-directed gap flows through the Columbia River Gorge uses three radar wind profilers during two winter seasons between October 2015 and April 2017, with a focus on the gap-exit region at Troutdale, Oregon. Of the 92 gap-flow events identified at Troutdale, the mean duration was 38.5 h, the mean gap-jet speed was 12 m s−1, and the mean gap-flow depth was 570 m MSL. The mean gap-jet height and gap-flow depth were situated below the top of the inner gorge, while a maximum depth of 1087 m MSL was contained within the gorge’s outer-wall rim. The mean gap-flow depth was deepest in the cold-air source region east of the gorge and decreased westward to the coast. Strong gap-flow events were longer lived, deeper, and capped by stronger vertical shear than their weak counterparts, and strong (weak) events were forced primarily by a cold-interior anticyclone (offshore cyclone). Deep gap-flow events were longer lived, stronger, and had weaker capping vertical shear than shallow events, and represented a combination of gap-flow and synoptic forcing. Composite temporal analysis shows that gap-flow strength (depth) was maximized midevent (early event), freezing rain was most prevalent during the second half of the event, and accumulated precipitation was greatest late-event. Gap-flow events tended to begin (end) during the evening (morning) hours and were most persistent in January. Surface wind gusts and snow occurrences around Portland, Oregon, were associated primarily with the deepest gap flows, whereas freezing rain occurred predominantly during shallow gap flows.
Abstract
A real-time, hourly updated, online graphical data product that displays the depth and strength of easterly gap flow in the Columbia River Gorge using a 915-MHz Doppler wind profiler is presented. During precipitation events, this data product also displays observed precipitation accumulation and diagnosed precipitation type using measurements provided by a collocated heated tipping-bucket rain gauge, an optical disdrometer, and temperature and relative humidity sensors. Automated algorithms that determine the existence and depth of the gap flow, as well as precipitation type, are described. The Columbia River Gorge is the only major gap in the Cascade Mountains of Oregon and Washington. Consequently, both easterly and westerly directed gap-flow events are common in this region. Especially during late autumn and winter, easterly gap flow can cause hazardous and damaging weather (e.g., snow, freezing rain, and strong winds) in the Portland, Oregon–Vancouver, Washington metropolitan area. The product described here was developed to help forecasters at the Portland National Weather Service Forecast Office monitor cool-season easterly gap-flow events in order to provide situational awareness and guide warnings to the public about potential weather-related hazards.
Abstract
A real-time, hourly updated, online graphical data product that displays the depth and strength of easterly gap flow in the Columbia River Gorge using a 915-MHz Doppler wind profiler is presented. During precipitation events, this data product also displays observed precipitation accumulation and diagnosed precipitation type using measurements provided by a collocated heated tipping-bucket rain gauge, an optical disdrometer, and temperature and relative humidity sensors. Automated algorithms that determine the existence and depth of the gap flow, as well as precipitation type, are described. The Columbia River Gorge is the only major gap in the Cascade Mountains of Oregon and Washington. Consequently, both easterly and westerly directed gap-flow events are common in this region. Especially during late autumn and winter, easterly gap flow can cause hazardous and damaging weather (e.g., snow, freezing rain, and strong winds) in the Portland, Oregon–Vancouver, Washington metropolitan area. The product described here was developed to help forecasters at the Portland National Weather Service Forecast Office monitor cool-season easterly gap-flow events in order to provide situational awareness and guide warnings to the public about potential weather-related hazards.