Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Andrew J. Monaghan x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Andrew J. Monaghan
and
David H. Bromwich

Antarctica is a challenging region for conducting meteorological research because of its geographic isolation, climate extremes, vastness, and lack of permanent human inhabitants. About 15 observing stations have been in continuous operation since the onset of the modern scientific era in Antarctica during the International Geophysical Year in 1957/58. Identifying and attributing natural- and human-caused climate change signals from the comparatively short Antarctic dataset is confounded by large year-to-year fluctuations of temperature, atmospheric pressure, and snowfall. Yet there is increasing urgency to understand Antarctica's role in the global climate system for a number of reasons, most importantly the potential consequences of ice-mass loss on global sea level rise. Here, we describe recently-created records that allow Antarctic near-surface temperature and snowfall changes to be assessed in all of Antarctica's 24 glacial drainage systems during the past five decades. The new near-surface temperature and snowfall records roughly double the length of previous such datasets, which have complete spatial coverage over the continent. They indicate complex patterns of regional and seasonal climate variability. Of particular note is the occurrence of widespread positive temperature trends during summer since the 1990s, the season when melt occurs. In forthcoming years, careful monitoring of the summer trends will be required to determine whether they are associated with a natural cycle or the start of an anthropogenic warming trend. Key questions are raised during the International Polar Year.

Full access
Jordan G. Powers
,
Andrew J. Monaghan
,
Arthur M. Cayette
,
David H. Bromwich
,
Ying-Hwa Kuo
, and
Kevin W. Manning

In support of the United States Antarctic Program (USAP), the National Center for Atmospheric Research and the Byrd Polar Research Center of The Ohio State University have created the Antarctic Mesoscale Prediction System (AMPS): an experimental, real-time mesoscale modeling system covering Antarctica. AMPS has been designed to serve flight forecasters at McMurdo Station, to support science and operations around the continent, and to be a vehicle for the development of physical parameterizations suitable for polar regions. Since 2000, AMPS has been producing high-resolution forecasts (grids to 3.3 km) with the “Polar MM5,” a version of the fifth-generation Pennsylvania State University-NCAR Mesoscale Model tuned for the polar atmosphere. Beyond its basic mission of serving the USAP flight forecasters at McMurdo, AMPS has assisted both in emergency operations to save lives and in programs to explore the extreme polar environment. The former have included a medical evacuation from the South Pole and a marine rescue from the continental margin. The latter have included scientific field campaigns and the daily activities of international Antarctic forecasters and researchers. The AMPS program has been a success in terms of advancing polar mesoscale NWP, serving critical logistical operations of the USAP, and, most visibly, assisting in emergency rescue missions to save lives. The history and performance of AMPS are described and the successes of this unique real-time mesoscale modeling system in crisis support are detailed.

Full access