Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Andrew J. Monaghan x
  • Weather, Climate, and Society x
  • Refine by Access: All Content x
Clear All Modify Search
Auwal F. Abdussalam
,
Andrew J. Monaghan
,
Daniel F. Steinhoff
,
Vanja M. Dukic
,
Mary H. Hayden
,
Thomas M. Hopson
,
John E. Thornes
, and
Gregor C. Leckebusch

Abstract

Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily populated northwest Nigeria with an annual incidence rate ranging from 18 to 200 per 100 000 people for 2000–11. Several studies have established that cases exhibit sensitivity to intra- and interannual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations of seven meteorological variables from an ensemble of 13 statistically downscaled global climate model projections from phase 5 of the Coupled Model Intercomparison Experiment (CMIP5) for representative concentration pathway (RCP) 2.6, 6.0, and 8.5 scenarios, with the numbers representing the globally averaged top-of-the-atmosphere radiative imbalance (in W m−2) in 2100. The results suggest future temperature increases due to climate change have the potential to significantly increase meningitis cases in both the early (2020–35) and late (2060–75) twenty-first century, and for the seasonal onset of meningitis to begin about a month earlier on average by late century, in October rather than November. Annual incidence may increase by 47% ± 8%, 64% ± 9%, and 99% ± 12% for the RCP 2.6, 6.0, and 8.5 scenarios, respectively, in 2060–75 with respect to 1990–2005. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as it is assumed that current prevention and treatment strategies will remain similar in the future.

Full access
Auwal F. Abdussalam
,
Andrew J. Monaghan
,
Vanja M. Dukić
,
Mary H. Hayden
,
Thomas M. Hopson
,
Gregor C. Leckebusch
, and
John E. Thornes

Abstract

Northwest Nigeria is a region with a high risk of meningitis. In this study, the influence of climate on monthly meningitis incidence was examined. Monthly counts of clinically diagnosed hospital-reported cases of meningitis were collected from three hospitals in northwest Nigeria for the 22-yr period spanning 1990–2011. Generalized additive models and generalized linear models were fitted to aggregated monthly meningitis counts. Explanatory variables included monthly time series of maximum and minimum temperature, humidity, rainfall, wind speed, sunshine, and dustiness from weather stations nearest to the hospitals, and the number of cases in the previous month. The effects of other unobserved seasonally varying climatic and nonclimatic risk factors that may be related to the disease were collectively accounted for as a flexible monthly varying smooth function of time in the generalized additive models, s(t). Results reveal that the most important explanatory climatic variables are the monthly means of daily maximum temperature, relative humidity, and sunshine with no lag; and dustiness with a 1-month lag. Accounting for s(t) in the generalized additive models explains more of the monthly variability of meningitis compared to those generalized linear models that do not account for the unobserved factors that s(t) represents. The skill score statistics of a model version with all explanatory variables lagged by 1 month suggest the potential to predict meningitis cases in northwest Nigeria up to a month in advance to aid decision makers.

Full access