Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Andrew Jessup x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Jim Thomson
and
Andrew T. Jessup

Abstract

A Fourier-based method is presented to process video observations of water waves and calculate the speed distribution of breaking crest lengths. The method has increased efficiency and robust statistics compared with conventional algorithms that assemble distributions from tracking individual crests in the time domain. The method is tested using field observations (video images of whitecaps) of fetch-limited breaking waves during case studies with low (6.7 m s−1), moderate (8.5 m s−1), and high (12.6 m s−1) wind speeds. The method gives distributions consistent with conventional algorithms, including breaking rates that are consistent with direct observations. Results are applied to obtain remote estimates of the energy dissipation associated with wave breaking.

Full access
Austin S. Hudson
,
Stefan A. Talke
,
Ruth Branch
,
Chris Chickadel
,
Gordon Farquharson
, and
Andrew Jessup

Abstract

Tides and river slope are fundamental characteristics of estuaries, but they are usually undersampled due to deficiencies in the spatial coverage of water level measurements. This study aims to address this issue by investigating the use of airborne lidar measurements to study tidal statistics and river slope in the Columbia River estuary. Eight plane transects over a 12-h period yield at least eight independent measurements of water level at 2.5-km increments over a 65-km stretch of the estuary. These data are fit to a sinusoidal curve and the results are compared to seven in situ gauges. In situ– and lidar-based tide curves agree to within a root-mean-square error of 0.21 m, and the lidar-based river slope estimate of 1.8 × 10−5 agrees well with the in situ–based estimate of 1.4 × 10−5 (4 mm km−1 difference). Lidar-based amplitude and phase estimates are within 10% and 8°, respectively, of their in situ counterparts throughout most of the estuary. Error analysis suggests that increased measurement accuracy and more transects are required to reduce the errors in estimates of tidal amplitude and phase. However, the results validate the use of airborne remote sensing to measure tides and suggest this approach can be used to systematically study water levels at a spatial density not possible with in situ gauges.

Full access