Search Results
Abstract
GCMs are used by many national weather services to produce seasonal outlooks of atmospheric and oceanic conditions and fluxes. Postprocessing is often a necessary step before GCM forecasts can be applied in practice. Quantile mapping (QM) is rapidly becoming the method of choice by operational agencies to postprocess raw GCM outputs. The authors investigate whether QM is appropriate for this task. Ensemble forecast postprocessing methods should aim to 1) correct bias, 2) ensure forecasts are reliable in ensemble spread, and 3) guarantee forecasts are at least as skillful as climatology, a property called “coherence.” This study evaluates the effectiveness of QM in achieving these aims by applying it to precipitation forecasts from the POAMA model. It is shown that while QM is highly effective in correcting bias, it cannot ensure reliability in forecast ensemble spread or guarantee coherence. This is because QM ignores the correlation between raw ensemble forecasts and observations. When raw forecasts are not significantly positively correlated with observations, QM tends to produce negatively skillful forecasts. Even when there is significant positive correlation, QM cannot ensure reliability and coherence for postprocessed forecasts. Therefore, QM is not a fully satisfactory method for postprocessing forecasts where the issues of bias, reliability, and coherence pre-exist. Alternative postprocessing methods based on ensemble model output statistics (EMOS) are available that achieve not only unbiased but also reliable and coherent forecasts. This is shown with one such alternative, the Bayesian joint probability modeling approach.
Abstract
GCMs are used by many national weather services to produce seasonal outlooks of atmospheric and oceanic conditions and fluxes. Postprocessing is often a necessary step before GCM forecasts can be applied in practice. Quantile mapping (QM) is rapidly becoming the method of choice by operational agencies to postprocess raw GCM outputs. The authors investigate whether QM is appropriate for this task. Ensemble forecast postprocessing methods should aim to 1) correct bias, 2) ensure forecasts are reliable in ensemble spread, and 3) guarantee forecasts are at least as skillful as climatology, a property called “coherence.” This study evaluates the effectiveness of QM in achieving these aims by applying it to precipitation forecasts from the POAMA model. It is shown that while QM is highly effective in correcting bias, it cannot ensure reliability in forecast ensemble spread or guarantee coherence. This is because QM ignores the correlation between raw ensemble forecasts and observations. When raw forecasts are not significantly positively correlated with observations, QM tends to produce negatively skillful forecasts. Even when there is significant positive correlation, QM cannot ensure reliability and coherence for postprocessed forecasts. Therefore, QM is not a fully satisfactory method for postprocessing forecasts where the issues of bias, reliability, and coherence pre-exist. Alternative postprocessing methods based on ensemble model output statistics (EMOS) are available that achieve not only unbiased but also reliable and coherent forecasts. This is shown with one such alternative, the Bayesian joint probability modeling approach.
Abstract
Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0°C (a simple proxy for temperature-driven snowmelt). These observed changes are also inconsistent with the model-predicted responses to variability in solar irradiance and volcanic activity. The observations are consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. It is found that, for each temperature variable considered, an anthropogenic signal is identifiable in observational fields. The results are robust to uncertainties in model-estimated fingerprints and natural variability noise, to the choice of statistical downscaling method, and to various processing options in the detection and attribution method.
Abstract
Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0°C (a simple proxy for temperature-driven snowmelt). These observed changes are also inconsistent with the model-predicted responses to variability in solar irradiance and volcanic activity. The observations are consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. It is found that, for each temperature variable considered, an anthropogenic signal is identifiable in observational fields. The results are robust to uncertainties in model-estimated fingerprints and natural variability noise, to the choice of statistical downscaling method, and to various processing options in the detection and attribution method.
Abstract
Observations show snowpack has declined across much of the western United States over the period 1950–99. This reduction has important social and economic implications, as water retained in the snowpack from winter storms forms an important part of the hydrological cycle and water supply in the region. A formal model-based detection and attribution (D–A) study of these reductions is performed. The detection variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen to reduce the effect of P variability on the results. Estimates of natural internal climate variability are obtained from 1600 years of two control simulations performed with fully coupled ocean–atmosphere climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The D–A shows the observations and anthropogenically forced models have greater SWE/P reductions than can be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced by anthropogenic greenhouse gases, ozone, and aerosols.
Abstract
Observations show snowpack has declined across much of the western United States over the period 1950–99. This reduction has important social and economic implications, as water retained in the snowpack from winter storms forms an important part of the hydrological cycle and water supply in the region. A formal model-based detection and attribution (D–A) study of these reductions is performed. The detection variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen to reduce the effect of P variability on the results. Estimates of natural internal climate variability are obtained from 1600 years of two control simulations performed with fully coupled ocean–atmosphere climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The D–A shows the observations and anthropogenically forced models have greater SWE/P reductions than can be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced by anthropogenic greenhouse gases, ozone, and aerosols.